Data Structures for Parallel Recursion

by

Jacob Kornerup, Cand. Scient.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 1997

www.manharaa.com

Data Structures for Parallel Recursion

Approved by
Dissertation Committee:

www.manharaa.com

To Kathy

www.manharaa.com

o AJLb

Acknowledgments

This work could not have been done without the continuing support of my advisor,
Jayadev Misra. He taught me many aspects of the research process, how to ask the
right questions, and how to pursue a problem until the elegant solution “fits on a
page”. He shared his ideas for the PowerList notation very early in its development,
and encouraged me to pursue my ideas about mapping the powerlist notation onto
hypercubes. Through the dissertation process he continually shared his ideas with
me, and encouraged me to continue my work building on his research. His con-
tributions were essential in the development of the ParList notation; the PowerList
descriptions and isomorphism proofs of the binary interconnection networks pre-
sented in Chapter 4 are due to him.

Edsger W. Dijkstra generously invited me to join the Austin Tuesday After-
noon Club in 1990, where rule 0 reads “Don’t make a mess of it”. A rule that I have
tried to avoid violating in my research. He taught me to think clearly about the
problem at hand, to present my solution in a concise manner, and that underneath
all the flashy buzzwords computer science is just that, a science.

Jorgen Staunstrup was the advisor on my master’s thesis at the University of
Arhus. He encouraged me to open my eyes to the world and to continue my studies
abroad. He has been a constant source of support and a valued source of information
ranging from the area of formal verification to the design of VLSI circuits.

Greg Plaxton has been a wonderful source of references and deep insights

v

www.manharaa.com

into the area of parallel algorithms. He was always able to point me to relevant
literature no matter what my question was. I also want to thank Mohamed Gouda
and Vladimir Lifschitz for serving on my dissertation committee and working with
me in scheduling the defense.

This work has benefited by discussions with the following researchers to
whom I am grateful for their time and interest: Guy Blelloch, F. Tom Leighton,
Ernie Cohen, Roland Backhouse and a handful of anonymous referees, who pointed
me towards weaknesses in earlier treatments of the structures. I want to thank the
members of the Austin Tuesday Afternoon Club who spent two sessions reading a
draft of the derivation of the odd-even sort, and suggested numerous improvements
that greatly enhanced its presentation.

I have many fellow students to thank for their help, support and companion-
ship during my “tenure” at UT Austin. First, I want to thank Al Carruth, who was
my officemate for many years. He encouraged me to work on mapping PowerList
onto hypercubes and helped me when I got stuck in my proofs. Edgar Knapp was
the first person I met from UT Austin. He was a very dear friend and mentor to me
during my first years in Austin, and gave me many good ideas for research directions
and valuable feedback on my early work.

Rajeev Joshi has been extremely helpful with my research. He has always
been available to listen to an idea or to read and comment on a rough draft. I have
learned to trust his judgment, and I know that he will become a very successful com-
puter scientist one day. He is learning from all the right people. Markus Kaltenbach
also helped me by reading and commenting very constructively on past papers and
drafts of this dissertation. Will Adams provided many insights into the PowerList
notation; he also challenged me to describe the odd-even sort in PowerLists.

Marco Schneider and I have been synchronizing our studies almost down

to the minute since we started at UT Austin. Thanks for many wonderful shared

www.manharaa.com

experiences, on and off campus.

A number of other students also deserve mention for their comments, feed-
back and support through this process: Emory Berger, Ken Calvert, Tim Collins,
Sarah Chodrow, Ruben Gamboa, Pete Manolios, Kedar Namjoshi, Dave Naumann,
Carlos Puchol, Lyn Pierce, Rajaraman Rajmohan, J.R. Rao, Mark Staskauskas,
Torsten Suel and Richard Trefler.

I want to thank my brother Jesper, who provided me with the wisdom that
quitting my teaching job and focusing on finishing my dissertation was the best
investment I could ever make in my future. He was right.

My parents Margot and Peter were a constant source of support and love
through the dissertation process. This document has benefited from a careful reading
from Peter, who spent a part of his vacation reading and commenting on a draft
version. Thanks for everything.

Finally and most importantly, I want to thank my wife Kathy Scherer for all
her loving and care. I would not have been able to complete this work if it had not
been for her. She shared the experiences from her dissertation process and gave me
the support I needed when I was in doubt. I am sorry for the late hours and my

absence in the last few months. This dissertation is for you.

JACOB KORNERUP

The University of Texas at Austin

December 1997

vi

www.manharaa.com

Data Structures for Parallel Recursion

Publication No.

Jacob Kornerup, Ph.D.
The University of Texas at Austin, 1997

Supervisor: Jayadev Misra

Parallel programming is still considered a difficult and error-prone activity. There
are no universally accepted abstractions that both capture the essence of most par-
allel architectures, and are useful to the programmer in expressing parallel compu-
tations.

In this dissertation we present three data structures: PowerList, ParlList, and
PList that can be used to describe parallel computations in a succinct manner. We
define an algebra along with the inductive definition of each structure. Parallel com-
putations are expressed as recursive functions over these definitions. The algebras
facilitate equational reasoning allowing functions representing parallel computations
to be derived from their specification.

PowerLists are linear structures whose lengths are a power of two. We ex-
tend Misra’s results [Mis94], by describing a mapping of the PowerList operators to
hypercubic architectures and by formally deriving the odd-even transposition sort.

The ParlList structure is an extension to the PowerList structure that allows
inputs of arbitrary lengths. We present the theory and show how functions and

properties of PowerLists can be extended to ParLists.

vii

www.manharaa.com

The PowerList structure is closely related to binary numbers. We generalize
PowerLists to PLists by introducing basic constructors that take an arbitrary, positive
number of similar PLists and return a single PList. PLists can be used to reason
algebraicly about manipulations on mixed-radix representation of natural numbers
with minimal use of index notations. Using PLists we describe four generalized

interconnection networks and show that they are isomorphic.

viii

www.manharaa.com

Contents

Acknowledgments iv
Abstract vii
Chapter 1 Introduction 1
1.1 Synchronous Parallel Programming 4
1.2 Basic Definitions and Notations 6
1.21 Types o 7

1.2.2 Operator Priority oo 8

1.2.3 Notation and Proof Style 9

1.3 Cost Calculus 11
1.3.1 Parallel Algorithm Complexity 14

1.3.2 Parallel Computation Models 17
Chapter 2 Powerlists 20
2.1 Introduction oL 20
2.1.1 Induction Principle for Powerlists 25

2.1.2 Data Movement and Permutation Functions 26

2.2 Hypercubes 29
2.3 A Cost Calculus for PowerlLists 30
2.3.1 Basic Functions oo oo 31

X

www.manharaa.com

2.4 Prefix Sumo 34

2.4.1 A Hypercube Algorithm for Prefix Sum 35

2.5 Mapping PowerlLists Onto Hypercubes 37
2.5.1 The Gray Coded Operators 39
2.5.2 Ladner and Fischer’s Algorithm Revisited 44

2.6 Fast Fourier Transform 45
2.7 Sorting e e 47
2.7.1 Odd-even Sort in PowerLists 48
2.7.2 Proving that oddeven Terminates 23
2.7.3 Proving that oddeven Permutes its Inputs o7

2.8 Summary 60
Chapter 3 Parlists 62
3.1 ParList Theory 63
311 Axioms ... 65
3.1.2 Induction Principle for ParList 69
3.1.3 Functions in ParList 73
3.1.4 Data Movement Functions 75
3.1.5 Broadcast Sum o oL 78
3.1.6 Reusing PowerList Proofs in the ParlList Algebra 78
3.1.7 Concatenation L oo 80

3.2 Prefix Sum L 82
3.3 Odd-Even Sort 83
3.3.1 Sorting 83

3.4 Adder Circuits e 89
3.5 Summary ... Ll 93

X

www.manharaa.com

Chapter 4 Plists 95

4.1 PList - An Extension of the PowerList Algebra 96
4.1.1 Scalar Data Structures 98

4.2 Functions over Plists 100
4.2.1 An Induction Principle for PLists 101

4.2.2 Permutation Functions in PLists 102

4.3 Interconnection Networks 107
4.3.1 Binary Interconnection Networks 108

4.3.2 Describing the Binary Networks in PowerList 110

4.3.3 Equivalence Between the Binary Networks 114

4.3.4 Generalized Networks 118

4.3.5 Describing the Generalized Networks in PLists 118

4.3.6 Equivalence Between the Generalized Networks 123

4.4 Summaryo e e 129
Chapter 5 Conclusion 131
5.1 Related Worko 131
0.1.1 Powerlists 131

5.1.2 Functional Parallel Programming 133

5.1.3 Bird-Meertens Formalism 135

5.1.4 Other Models for Parallel Programming 136

5.2 Future Work o 138
5.3 Final Comments Lo 140
Bibliography 141
Vita 150

xi

www.manharaa.com

Chapter 1

Introduction

“The arguments for parallel operation are only valid provided one applies
them to the steps which the built in or wired in programming of the
machine operates. Any steps which are controlled by the operator, who
sets up the machine, should be set up only in a serial fashion. It has
been shown over and over again that any departure from this procedure

results in a system which is far too complicated to use.”

The above statement was made by J. P. Eckert, Jr. in 1946 [Eck46] (as cited in
[Kel89]) in an argument for parallel data transfer and arithmetic in the computers
of the EDVAC’s generation. The statement gave a rather pessimistic outlook for
the spread of parallel programming as performed by the operator. Since 1946 a
number of innovations such as high level languages, compilers, theories and logics
have made parallel programming an easier and more reliable task. But, even with
these advances, it can be argued that Eckert’s statement can be accepted today.
Parallel programming is still difficult and error prone in comparison with sequential
programming, where tools and methodologies are available to produce correct and
reliable programs. This does not mean that sequential programs are error free and

can be delivered on schedule, but today it is well understood how to write such

www.manharaa.com

programs correctly.

There are a number of success stories in parallel programming. Most of the
so called “grand challenge problems” such as large-scale simulations and modeling
problems can only be solved by exploiting parallelism. This is usually done on par-
allel hardware sold by the super-computing industry. An industry that has grown
as government and defense agencies and corporate research facilities have increased
their demand for computational power. Parallel programming is also necessitated
by dedicated parallel hardware such as digital signal processors and imaging hard-
ware. These applications for parallel programming tend to stay close to the “built in
or wired in programming” mentioned by Eckert, i.e., they are performed by highly
trained experts. A pessimist may still adopt the view that non-expert program-
mers who attempt to write a parallel program, will produce “a system which is
far too complicated to use.” We will not advocate such a pessimistic view in this
dissertation, but the premise does stand that parallel programming is difficult, and
methodologies need to be developed to make the task simpler and more reliable.
This dissertation is an attempt to present such a methodology, a simple way to ex-
press parallel computations while allowing formal verifications of their correctness.

This dissertation is written with a firm belief in the use of Formal Methods,
that is the use of tools and techniques based on mathematical models of computa-
tions and architectures in the development of software. Combining this belief with
an identification of the main tasks in software development, we identify the following

three stages in the software development process:

Specification: Constructing a formal description of the problem to be solved. All
participants in the development process should be in agreement that this de-
scription captures the essence of the problem. The specification should be

amenable to a formal proof that can verify that a program meets it.

Program construction: The task of creating an artifact that meets the specifica-

www.manharaa.com

tion of the problem and can be implemented efficiently on the target architec-

ture.

Implementation The mapping of the the program onto the computing resources
available for its execution. This should be done using tools or techniques that
have been formally verified or has been under intense scrutiny by a large pool

of users. A commonly used compiler is an example of such a tool.

In sequential programming the implementation phase is usually handled by
a compiler capable of producing optimized code for the target architecture. Such
compilers are possible since most sequential architectures are similar at higher levels
of abstraction, and differences at the lower levels can be exploited by the compiler
to generate efficient code for each architecture. The similar architectures have the
added advantage that high level languages can be designed with ease of expression in
mind without sacrificing efficient compilation strategies. This gives programmers of
sequential systems the luxury of focusing on the correctness and abstract complexity
of their programs, letting the compiler implement their programs efficiently and
correctly.

Parallel architectures are very different from each other, even at higher levels
of abstraction'. One approach to designing a parallel programming language is to
let the language reflect a particular architecture, and aim for efficient compilations
to the architecture. This approach may be successful for writing programs for a spe-
cific architecture, for example signal processing software for customized hardware.
This is not an attractive solution, since most programming problems are not phrased
in terms of concrete architectures, leaving the programmer with the wrong set of
abstractions. Another approach is to abstract away from most architectural consid-
erations, and build a programming language around abstract notions of parallelism.

This approach allows the programmer to concentrate on “what needs to be done”

1We will discuss some of these differences in Section 1.3.2

www.manharaa.com

rather than “how it can be done on the architecture.” We take the second approach
in this dissertation, by presenting three formalisms for expressing parallel programs
as recursive functions. These formalisms are designed to utilize the symmetry found
in most parallel architectures by emphasizing symmetric programming constructs.

A significant amount of parallel software is now written in sequential pro-
gramming languages extended with “parallelism constructs.” These constructs allow
the programmer to specify how selected portions of the program can be executed
in parallel, and how data are assigned to physical processors. Examples of such
languages are FORTRAN-90 [ANSI90], C* [RS87], *Lisp [Las86], multiC [Wav92]
and many others. The use of such languages is close to an acceptance of Eckert’s
statement, since the programmer is only trusted with a sequential language.

Some compilers are designed with this acceptance in mind. They examine
the sequential parts of the program in an attempt to discover independent threads
of control that can be parallelized. So far there are no success stories where such
compilers were able to identify significant amounts of parallelism from sequential
programs, except where the independence between subcomputations (i.e., paral-

lelism) is obvious even in a sequential description.

1.1 Synchronous Parallel Programming

In this dissertation we focus on synchronous parallel programming, characterized
by architectures where a collection of processing elements operate in a “lock step”
manner. A synchronous parallel programming notation should capture the fact
that many things happen at once during a parallel execution. Take as an example
the problem of incrementing each element of a vector of numbers by one. The
increment operations are independent, and can be performed in any order including
simultaneous application. On a parallel machine where the number of available

processors exceeds the length of the vector, this operation can be achieved in a

www.manaraa.com

single step, if each element can be accessed directly by its dedicated processor.
This example falls into a particular category of parallel computations: a function is
applied independently to each element of a linear structure. It is important to be
able to capture these computations in a parallel programming notation, but we do
not stop with such constructs; they can already be expressed in sequential languages
with extensions for parallelism.

Many programming problems have solutions that can be characterized as
divide and conquer. Depending on the size and structure of the problem it is either
solved directly, or broken into smaller problems that can be solved recursively; these
solutions are then combined to form the answer. The increment problem described
above has a simple divide and conquer description: the element of a single-element
vector is incremented; a vector whose length is at least two is broken into two
disjoint sub vectors, where the increment operation is performed separately on each
component; finally, the resulting sub vectors are combined in their original order
to form the resulting vector. Note that we presented an abstract solution to the
problem. An implementation may choose to apply the increment directly to each
element of the vector; this would be consistent with the divide and conquer solution.

We base our theories on functions over linear data structures. We define these
structures as symmetrically as possible, in order to equalize the size of the recursive
tasks generated by the divide and conquer strategy. This is done to exploit the
symmetry present in most parallel architectures. We give two different ways to
construct linear structures from a pair of equally sized sub-structures, either by
concatenation or by interleaving?. The choice between these two constructions give
the programmer an extra degree of freedom, and makes it possible to express many
parallel programs elegantly.

Our choice of a functional notation is influenced by the successes of sequen-

2These constructions will be clarified further when we define the PowerList, ParList, and PList
notations in Chapters 2, 3 and 4.

www.manharaa.com

tial functional programming languages. A functional program can often be specified
directly by presenting a function that solves the problem. This function may not be
the most efficient implementation available, as we saw with the increment problem
above. It is often possible to prove that functional descriptions representing more
efficient implementations compute the same function. These proofs can often be
done using equational reasoning, that is through a series of identity preserving steps
that transforms one function into the other. Some proofs can be done as deriva-
tions: starting from the specification function, the efficient implementation emerges
through a series of equality preserving steps. Ideally, the choice of the next trans-
formation is given from the shape of the current formula and heuristics that have
been developed for the particular problem domain. We will see this technique used
throughout this dissertation. In this work we spend our efforts on creating the right
abstractions to express certain parallel computations, rather than presenting a com-
plete programming language. We leave the detailed design decisions of a full-fledged
programming language to others.

We use algebraic constructors for the data structures as the only way to
access their individual elements. It is the author’s belief that a main reason why
parallel programming is so difficult today is the widespread use of indezing notations
in parallel programming languages. The programming task becomes a painstaking
bookkeeping job, and proofs of correctness become nightmares rather than creative
and enlightening activities. Many architectures and algorithms are built on nice
algebraic properties; it is our goal to capture these properties as elegantly as possible

in the structures and theories we define.

1.2 Basic Definitions and Notations

In this section we introduce the type system, notations and conventions that will be

used in the rest of this dissertation.

www.manharaa.com

1.2.1 Types

In this dissertation we define three linear data structures: PowerlList, ParlList and
PList. We introduce a simple type system, to be precise about the types of these
structures and the use of types in general. We use the name Type to denote the
class of all types of interest3. We will not do any manipulations on the class Type
as a whole, only on elements of it.

We use the following basic data types:

Type name | Defined as

Nat The natural numbers

Pos The positive natural numbers
Real The real numbers

Com The complex numbers

Bool The booleans

In Chapter 4 we define aggregate types such as linear lists (List), strings (String) and
sets (Set). We use the type variables A, B, C, L, M, X, Y and Z to denote elements
of Type and, unless explicitly restricted in the text, these variables are universally
quantified over Type. The type of a function is specified by giving the name of the
function, its domain and its range. For example, the successor function succ on Nat
has the type succ : Nat — Nat. We use x to denote pairing of types (e.g., Nat x Nat
is the type of all pairs on natural numbers). This notation will primarily be used
to denote that a function has more than one argument. We use exponentiation of
a type by a natural number to denote the multi-way pairing of a type (e.g., Nat?
denotes the same type as Nat x Nat).

We formalize the types of the Powerlist, ParList and PList structures by

introducing a type function for each structure. These functions take two arguments,

31If this definition troubles the reader, then it should be ignored and Type should only be thought
of as a name of some abstract collection.

www.manharaa.com

a type and a length, and return the type of all instances of the structure with
elements of the given type and length equal to the given length. As an example we

define ParList by the type function®
ParList : Type x Pos — Type (1.1)

which returns the type containing all ParLists with elements from Type, whose length
is as specified by the second argument. For example, ParList.Nat.2 denotes the type
of all ParLists of length 2 with natural numbers as elements. We overload the name
ParList by having it denote the type of all ParLists (corresponding to ParList.X.n
for all X and n). We also use ParList as a name for the algebra we define to prove
properties of ParLists.

We will only write expressions that have a correct type as defined by the
type constructors for the structure. In the Parlist algebra, for example, when we
write p < ¢ it is understood that p and ¢ are similar ParLists (i.e., both members of
ParList.X.n for some X and n). When we write a >p we assume that a is similar to
the elements of p. These conventions apply to the PowerList and PList algebras as

well. A type that is not a PowerList, ParList or a PList is called a scalar type.

1.2.2 Operator Priority

We give different binding powers to binary operators, as prescribed by the table
below, to minimize the use of parentheses in expressions. The operators in the table
are grouped in decreasing binding power downwards; within a group the operators

have the same binding power:

*A function like ParList is often called a type constructor [MTH90].

www.manharaa.com

q a
= D
Ok

+ 1l & ® + ® x o = mod +

>
[><]|[><]G|G
o &
< < = #F <~
= <=
ANV
X
—

1.2.3 Notation and Proof Style

We will use a notation similar to that presented by Dijkstra and Scholten [DS90],
which includes writing function application by an infix, left associative dot “.” op-
erator; for example, f.x denotes the value returned by the function f when applied
to the argument x . When a function has more than one argument we write a
sequence of arguments separated by the dot operator, denoting an implicit curry-
ing of the function. For example, g.a.b is the same as (g.a).b by left associativity,
since we identify g: Ax B — C with g: A — (B — C). By currying we have
ga:B— C.

Proofs and derivations are written with lines containing formulas separated
by lines that have a relational operator and a piece of text (called a “hint”) that
explains why the preceding and the following line are related by the operator. For

instance, a proof of the boolean expression P = R is true could be written as:

www.manharaa.com

Proof of P = R
R
< { hint explaining why R < @Q }

Q
= { hint explaining why @

Py
P

End of Proof

Occasionally we break formulas and hints across more than one line. The indentation
of the following line should make it clear that this has taken place. Formulas are
labeled with numbers of the form (m.n) where m is the number of the chapter where
the formula is introduced and n is a running counter within each chapter. These
numbers are used in hints and in the text to refer to the definition of a formula.
When a function name is given with such a number in a hint, it refers to the formula
that defines the function.

The functional notations we define enjoy the referential transparency prop-
erty [BW88]; that is, variables do not change their values within the context of
their definition, and can thus be substituted using a simplified version of the Rule

of Leibnitz:
Ve,y,f:x,y€e AN fEA-—B): 2=y = fax=Ffy) (1.2)

Above we used the quantified notation from [DS90] where the dummies are z, y, f,
the range is z,y € A A f € (A — B) and the term is x =y = f.z = f.y. The
range restricts the values of the dummies within the quantification; thus, we omit
the range if it is obvious from the context. We also use this notation for operators

that are associative and commutative. We can write a well-known identity by:

(+i:0§i/\z'<n:z'):w (1.3)

10

www.manharaa.com

When the operator has an identity element, the range may be empty (i.e., false) and
the value of the quantification is the unit element. The quantification in (1.3) has
the value 0 when n = 0. We use the shorthand 0 < i < n to specify the range of the
natural numbers in (1.3).

We use lambda abstraction to define anonymous functions; for example,
(An = nxn)

is the function that returns the square of its argument.
All free variables in formulas are universally quantified over their type, unless
restricted in the surrounding text. We use the following conventions for naming

variables unless stated otherwise in the context:

a,b,c,d,e, f,g,h,x,y,z Scalars

p,q, 7,8, t,u, v, w PowerLists, ParLists or PLists
1,7, k,m,n Nat or Pos
l List

A B, C L MXY, Z Type

The choice between Powerlists, ParLists or PLists is determined by the enclosing

chapter or section.

1.3 Cost Calculus

In this section we develop a cost calculus that enables us to estimate the time used
by an algorithm when mapped to a particular architecture. In Chapter 2 we will

use this calculus to quantify the running times of PowerList functions mapped onto

hypercubes.

11

www.manharaa.com

Big O notation

In the literature an upper bound of the growth of a function is often given with the
“big O” notation, e.g.,

log.n = O(y/n)

which states that the logarithm function grows no faster than the square root func-

tion. In general, “big O” is defined by:
gn=0(fn) = (Fem:c>0 A m>0:(Vn:n>m:gn<cxfn)) (14)

Thus, g has a slower growth than that of f for all arguments beyond a certain point.
While the concept of bounding the growth of a function is important, this
notation is problematic due to the use of the equality operator, a symmetric relation.
This prevents equational reasoning using the “big O” notation. Most good expo-
sitions of the notation make cautionary remarks about its use. Cormen, Leiserson
and Rivest acknowledge this potential abuse of notation in their textbook [CLR90].
They define O as a function that maps natural valued functions to sets of natural
valued functions, and state complicated rules to interpret equalities containing O.
An alternative to this approach is to view O as a relation on natural valued

functions: O : (Nat —s Real) x (Nat — Real) — Bool
gOf = @emic>0Am>0:(Vn:n>m:gn<cxfn)) (1.5)

Asarelation O is reflexive and transitive, but neither symmetric nor anti-symmetric.
Viewed this way) introduces a preorder on the set of functions in (Nat — Nat)
The relation Q provides an upper bound for the “erowth” of a function. Its

dual €2 provides a lower bound for the growth of a function:

gQf = Fem:e>0Am>0:(Vn:n>m:gn>cxfn)) (1.6)

It is simple to prove

12

www.manharaa.com

Lemma 1

fOg = ¢Qf

Proof Lemma
fOg
= { Definition of O (1.5) }
Fe,m:ie>0 A m>0:(Yn:n>m: fn<cxgn))
= { Arithmetic, ¢ >0 }
(Ge,m:ie>0 A m>0:(Yn:n>m:1/cx fn<gmn))
= { Change of dummy d := ¢, arithmetic }
(Fd,m:d>0 A m>0:(Vn:n>m:gn>dx fn))
= { Definition of 2 (1.6) }
gS)f

End of Proof

From this it follows that only one of (J and €2 is needed.
The relation O gives both an upper and a lower bound on the growth of a

function, it is defined by:

fOg=Cc,dm:c>0Ad>0Am>0:(Vn:n>m:exgn < fn A f.n<dxg.n))
(1.7)
The relation © can be replaced by:

fOy
= { O 17}
(Fe,dym e >0ANd>0Am>0:(Yn:n>m:cxgn<fn AN fn<dxgn))
= { predicate calculus, and arithmetic }
(Fd,m:d>0 A m>0:(Vn:n>m: fn<dxgmn))
AN (Femie>0Am>20:(Yn:n>m:cxgn< fn))

= { definitions of O (1.5) and £ (1.6) }

13

www.manharaa.com

fOg A £y
= { Lemma (1) }
fOgngOyf
These two derivations establish that the relation (0 is fundamental for stating
complexity bounds.
To facilitate proofs we introduce a modified less-than relation on functions
over the naturals <: (Nat — Real) x (Nat — Real) — Bool, denoting that above

some threshold the left function yields values below those of the right function:
fSg = (@na(Meik>n: fk<gk)) (1.8)
The functions one : Nat — Nat and id : Nat — Nat are defined by

one = (An:1) (1.9)

id = (An:un) (1.10)

They are used to measure the complexity of the functions we define. The following

lemma is useful in solving recurrences over Nat

Lemma 2

(Jc:ceNat: (An: fi(n+1)) < (An:: fon+0)) = f0id (@111
O fn+1) <f = fO one (112

(Je:ceNat: f < (An:c) < f O one (1.13)

1.3.1 Parallel Algorithm Complexity

To motivate the cost calculus we introduce some basic concepts from parallel algo-

rithm complexity theory as presented in the literature (e.g., [KR90, J4J92]). Assume

14

www.manharaa.com

that we are studying a parallel algorithm that solves a particular problem, parame-
terizable by the size of the input n. Let S.n denote the time complexity of the best
known sequential algorithm that solves a problem of size n, and let P.n be the time
complexity of the algorithm that we are studying. According to Brent’s Scheduling
Principle [Bre74]

Pn>Sn/p (1.14)

where p is the number of processors used by the parallel algorithm. An operational
interpretation of Brent’s Scheduling Principle is that any parallel algorithm can be
simulated on a uniprocessor machine, by having the single processor in turn act as
each of the p parallel processing elements. In p steps the single processor simulates
one step of the parallel algorithm. This is a simplified simulation, since the inter-
mediate states produced by the simulation may corrupt the sequential simulation.
This can be remedied by replicating the values of the variables read by the parallel
step before each step is simulated by the uniprocessor.

For a parallel algorithm it is not always the case that all processors are doing
something useful in each step. Consider the problem of computing the sum of the
elements of a list. This can be done in parallel by placing the elements of the list
in the leaves of a binary tree. At each step the processor assigned to a node of
the tree performs the addition of the values stored at its children, if these values
have been computed. In a balanced binary tree the number of additions performed
at the leaves is half the length of the list, whereas only one addition is performed
at the root. Due to the data dependency inherent to the problem, the addition
at the root cannot be performed before the other additions in the tree have been
performed. This means that at the last step of the computation only one processor
will be active.

To measure how efficiently a parallel algorithm is utilizing the processors we

introduce the notion of the cost, C.p, of a parallel algorithm using p processors,

15

www.manharaa.com

defined by:
Cpn=Pnxp

A parallel algorithm is considered optimal if
cp O S
Next, we define the reflexive and transitive relation P
fPg = (Gk:k>0:f0 (gxlogh)) (1.15)

that states that f grows no faster than the product of g and some logarithmic

polynomial. A parallel algorithm is considered to be efficient if
Cp P S (1.16)

For the problem of computing the sum of a list, using a tree structure, we have the

following relationships (see the proof below for explanations):

id O s (1.17)
P P one (1.18)
Cp OPxid (1.19)

From the above we can prove that this scheme is efficient:
CpP S (1.20)

Proof of (1.20)
C.p
O { pis at most input size (1.19) }
P xid

O { summing is linear (1.17); monotonicity of * under O (1.21) }
PxS

16

www.manharaa.com

P { tree has logarithmic height (1.18); monotonicity of * under P (1.22) }
one x S

© { property of one }
S

End of Proof

In the proof we used the following monotonicity properties of multiplication with

respect to () and P

fOnh = gxfOgxh (1.21)
fPh = gxfPgxh (1.22)

(1.20) follows from the derivation above and the following “transitivity” properties:

fOgngPh = fPh (1.23)
FPg A gOn = fPh (1.24)

1.3.2 Parallel Computation Models

The most studied model of a parallel architecture is the Parallel Random Access
Machine (PRAM). A PRAM consists of a set of processing elements (processors)
each with access to their private memories and to a shared memory. A computational
step of a PRAM algorithm consists of the following sequence of operations performed
by each processor: read a single data value from either the shared or private memory,
perform a single operation, and write a value to either memory. There are different
variations on the PRAM model that specify whether more than one processor can
read/write to the same memory location in the same step and how conflicts are
resolved. In this work we will only study the CREW PRAM, that permits more
than one processor to read from the same memory location in a step, but requires

that all writes be to separate locations.

17

www.manharaa.com

The PRAM models are idealized machines in the sense that they ignore the
fact that most parallel architectures do not have a shared memory, but instead
rely on communication channels between processors with private memory. Such an
architecture can be viewed abstractly as a graph where the nodes are the processing
elements and the edges are the communication channels. Several properties of this

graph are important in characterizing the architecture:

Diameter the maximal distance between two nodes. A measure of how many

“hops” a message may have to endure.

Degree the maximal number of edges incident to a node. The lower the degree the

easier it is to physically realize the design in hardware.

There are many different proposals for topologies for parallel architectures,

among them are (from [McC91]):

Topology Degree | Diameter
1D array (ring) 2 p/2
Shuffle-exchange 3 2xlogp
Cube-connected-cycles 3 (5/2) xlogp
2D mesh of trees 3 2 xlogp
3D mesh of trees 3 2 xlogp
2D array (toroidal) 4 VP
Butterfly (wrapped) 4 2 x logp
de Bruin 4 log p
3D array (toroidal) 6 Ip
Pyramid 9 log p
Hypercube log p log p
PRAM P 1

18

www.manharaa.com

Note that we can view a PRAM as the complete p-graph. The literature
contains many results that show that one architecture can simulate another with
a slowdown described by a function f; that is, an algorithm that runs in time P.n
on the second architecture runs in time f.n * P.n under the simulation on the first
architecture. If f () one then we say that the first architecture is at least as powerful
as the second; thus, we can describe a partial order that ranks the computational
power of the different architectures.

A realistic complexity model for parallel algorithms needs to consider the
communication costs that are inherent in most architectures. One such proposal
is LogP [CKP193], that models an architecture abstractly with four parameters to
specify: the computing bandwidth, the communication bandwidth, the communi-
cation delay, and the efficiency of coupling communication and computation. For
our purposes such a model is too complex, since we want to avoid working with

architectures at this level of detail.

19

www.manharaa.com

Chapter 2

Powerlists

In this chapter we present the PowerList data structure and its theory [Mis94] illus-
trated with examples of parallel algorithms expressed as functions over PowerList.
We provide a cost calculus that allows us to quantify the time that implementations
of the PowerList notation may take on particular parallel architectures and show an
efficient mapping of the PowerList operators to hypercubes [Kor94, Kor95]. Finally,
we study how different sorting algorithms can be expressed in the PowerList notation,

focusing on a derivation of the odd-even transposition sort [Kor97a, Kor97c].

2.1 Introduction

Functional programming languages typically employ lzsts where the basic construc-
tors (adding or removing a single element) allow for sequential processing of the list
elements. The PowerList notation [Mis94] uses balanced division of lists in order to
allow for parallel processing.

A PowerlList is a linear data structure whose elements are all of the same data
type. The length of a PowerlList is always a power of two. The smallest PowerList

has length one; it is called a singleton and is written as (a) where a is the element

20

www.manharaa.com

of the singleton. PowerlLists of equal length with elements from the same data type
are called similar. Two similar PowerLists, p, ¢, can be combined into a PowerList of

twice their lengths in two different ways:

e p | g (pronounced p “tie” q) is the PowerList that consists of the elements of p

(in order) followed by the elements of ¢ (also in order);

e p < ¢ (pronounced p “zip” q) is the PowerList that consists of alternately

taking elements from p and ¢ (in order) starting with p.

We introduce the type-function PowerList : Type x Nat — Type that takes
two arguments, a type (say X) and a natural number (say k) and returns the type
of all PowerLists with elements of type X and length equal to 2*. for example,
PowerList.Nat.2 is the type of all PowerLists of length 22 containing natural numbers
as elements. The statement that p and ¢ are similar is equivalent to saying that p
and ¢ both belong to PowerList.X.n for some X and n. The types of the PowerList

constructors are as follows:

(-) : X — PowerList.X.0 (2.1)
_| - : PowerList.X.n x PowerList.X.n — PowerList.X.(n + 1) (2.2)
>< : PowerList.X.n x PowerList.X.n — PowerList.X.(n + 1) (2.3)

The functions length : PowerList.X.n — Pos and loglen : PowerList.X.n — Nat are

defined by

(Vp : p € PowerList.X.n : length.p = 2") (2.4)

(Vp : p € PowerList.X.n : loglen.p = n) (2.5)

The following axioms define the PowerList algebra:

loglen.p >0 = (Ju,v:p=u|v) (2.6)
loglen.p >0 = (Ju,v::p=uxo) (2.7)
21

www.manharaa.com

(a) =(b) = a=0b (2.8)

plg=ulv = p=u A g=v (2.9)
prg=uxov = p=u A qg=uv (2.10)
(a) [(b) = (a)p>a(b) (2.11)

(plg) o (ulv) = (peau) | (gx=v) (2.12)

We often refer to Axiom (2.12) by saying that zip and tie commute (Richard Bird
[Bir89] calls this property abide).

There is no way to directly address a particular element of a PowerList. The
only way to access the elements of a Powerlist is to break it down using < and
| as deconstructors, i.e., by using Axioms (2.6) and (2.7). For expository reasons
we overload the singleton notation to write concrete PowerLists in examples, e.g.
(0 12 3) is the PowerList containing the first four natural numbers. This notation
is not part of the theory itself and will not be used in derivations.

Let ®:Y XY — Y be a binary operator, defined on the scalar type
Y. We lift ® to operate on Powerlist.Y in an “element-wise” fashion, i.e.,

® : PowerList.Y.n x PowerList.Y.n — PowerList.Y.n, with the following laws

(@)@ () = (ab) (2.13)
Pl |v) = (peu) | () (2.14)
(p=g)®(uxv) = (pRu) x (o) (2.15)

Note that only one of (2.14) and (2.15) is needed, as one can be proven by structural
induction from the other. Note also the similarity between (2.12) and (2.14) (or
(2.15)); we often refer to (2.14) (and (2.15)) by saying that | and ® (or > and ®)

commute. As an example we look at addition over natural numbers:
(4793)+(2584)=(612177)

Relations over scalar types are lifted in a similar fashion, to relations on

PowerLists of the same type. Let A be a relation defined on a data type X, i.e.,

22

www.manharaa.com

A : X x X — Bool, and let p,q,u,v € PowerList.X.n and x,y € X , we define the
lifting of A by:

(z) A (y) = Ay (2.16)

(p<qg) A (ux=v) = (pAwu) A (gAv) (2.17)

i.e., two PowerLists are related by A iff all elements are related pairwise. This extends

Axiom (2.10) from the PowerList algebra, which defines = on PowerLists constructed

using < in this way. It is worth noting that the terms p # ¢ and —(p = ¢) are not

necessarily identical for non-singleton PowerLists p and q. We could have used | in

defining A over PowerLists, since a simple consequence of (2.17) is
Pla) Aulv) = (pAu) N (¢A0) (2.18)

Functions on PowerLists are defined using pattern matching known from func-
tional programming languages such as ML [MTH90] and Miranda™ [Tur86]. It fol-
lows from the PowerList axioms that a singleton can be deconstructed uniquely, and
similarly that a non-singleton PowerList can be deconstructed uniquely using both <
and |. We can define the permutation function rev : PowerList.X.n — PowerList.X.n
that returns the PowerList where the order of the elements of the argument PowerList

are reversed:

rev.(a) = (a) (2.19)

rev.(u | v) = Trev.v | rev.u (2.20)
rev can also be defined using zip as the deconstructor:
rev.(u X v) = rev.v X rev.u (2.21)

It is a simple exercise to show that rev is an involution, i.e., its own inverse. As an

example of applying rev we have:
rev.(0123)=(3210)

23

www.manharaa.com

Next, we define the function sum : PowerList.Y.n — Y that computes the sum of
the elements of a PowerlList. We assume that the addition operator & : Y xY — Y

is associative:

sum.(a) = a (2.22)

sum.(p | q) sum.p @ sum.q (2.23)

The computations of sum have the shapes of balanced binary trees. The function
sum is an example of a reduction. In general, we define the reduction function

reduce : (Y X Y — Y) x PowerList.Y.n — PowerList.Y.n by:
reduce.®.{(a) = a (2.24)
reduce.®.(p | q) = reduce.®.p & reduce.d.q (2.25)
It follows by instantiation that sum = reduce.® .

The function reduce is an example of a higher order function, i.e., a function
that takes a function as an argument. Another example of a higher order PowerList
function is: map : (X — Z) x PowerList.X.n — PowerList.Z.n that takes a function
and a PowerList and applies the function to each element of the PowerList. We define
map by:

map.f.(a) = (fa) (2.26)

map.f.(p><1q) = map.f.p < map.f.q (2.27)

as an example we apply the function abs, that returns the absolute value of an
integer, to the PowerList (17 -3 0 -2):

map.abs.(17 -3 0 -2) = (17 3 0 2)

Note that for scalar functions, like abs, we could have lifted its definition to operate
on PowerList like we did for scalar binary operators in (2.13), (2.14) and (2.15).

Such a notation is simpler than using map and will be used in the following where

applicable.

24

www.manharaa.com

2.1.1 Induction Principle for PowerLists

Functions over PowerLists are defined by structural induction. In proving properties
of Powerlists and Powerlist functions we exploit their structural definition. Let
IT : PowerList.X.n — Bool be a predicate whose truth is to be established for all

PowerList over X. We can establish II by the following induction principle:

(Vx :z e X: 11.(z))
AN ((VYp,q,n:p,q € PowerList.X.n A ne€Nat:Il.p A Il.g = IL.(p|q))
V (Vp,q,n : p,q € PowerList.X.n A n € Nat:Il.p A Il.q = Il.(p=gq)))

(Vp,n : p € PowerList. X.n A n € Nat : IL.p)

As an example of a proof by structural induction we prove the following

commutative property between map and rew:

rev.(map.f.p) = map.f.(rev.p) (2.28)

Proof of (2.28). Base case:
rev.(map.f.(a))
— { map (226) }
rev.(f.a)
= { rev(2.19) }
(f.a)
— { map (226) }
map.f.(a)
= { rev (2.19) }
map.f.(rev.(a))

Inductive step:

rev.(map. f.(p > q))
= { map (2.27) }

25

www.manharaa.com

rev.(map.f.p > map.f.q)
= { rev(2.21) }

rev.(map.f.q) >4 rev.(map.f.p)
= { induction (2.28) }
map.f.(rev.q) b1 map.f.(rev.p)
— { map (2.27) }

map. f.(rev.q < rev.p)
= { rev(2.21) }
map. f.(rev.(p > q))

End of Proof

2.1.2 Data Movement and Permutation Functions

In the following we define the functions rr, rl and inv that permute the elements
of a PowerList, like rev defined above. We also define the operators — and < that
perform data movements on PowerLists that are closely related to the permutation
functions rr and rl. These functions are fundamental building blocks for PowerList
functions.

The operators — (“right-shift”) and « (“left-shift”) have the type:

— : X X PowerList.X.n — PowerList.X.n

<+ : PowerList.X.n x X — PowerList.X.n
They can be defined as follows [Ada94]:

z—(a) = (z) (2.29)

z—=(p<gq) = x—q X p (2.30)

'The operators — and « have a binding power that is greater than that of the other binary
operators, with the exception of function application (infix dot). See Section (1.2.2) for the complete
table of binding powers.

26

www.manharaa.com

(a)¢—z = (z) (2.31)

(p=qg)x = q X< pex (2.32)

The operator — takes a scalar and a PowerlList as arguments, and returns the
PowerList obtained by shifting all the elements of the supplied list one position to
the right, and inserting the scalar as the leftmost element. Note that the rightmost
element of the supplied PowerList is lost by this operation. The dual operator <
performs a similar operation, except that the PowerList is shifted to the left and the
scalar is inserted as the rightmost element. As examples of applying these operators
we have:

0—(1234)=(0123) (0123)«4=(1234)

The functions first : PowerList.X.n — X and last : PowerList.X.n — X return the

first and last element of a PowerList, respectively:

first.{a) = a (2.33)
first.(p | q) = firstp (2.34)

last.(a) = a (2.35)
last.(p | ¢) = last.q (2.36)

We use the following shorthand for first and last when convenient:
P = firstp and P = last.p

Using first and last we can provide an alternative definition of — and <«

using | as the constructor (a proof of (2.37) can be found in [Ada94]; the proof of
(2.38) is dual):

a—=(plq) = a—p | P—q (2.37)

(plq)a = p—q | ga (2.38)

27

www.manharaa.com

The function rr: PowerList.X.n — PowerList.X.n rotates the elements of a
PowerList one position to the right, wrapping the rightmost element around; its
inverse rl: PowerList.X.n — PowerList.X.n rotates the elements of a PowerList one

position to the left, wrapping the leftmost element around.

rr.(a) = (a) (2.39

I
<
3
(S
bS]
—
[\
B
o

)
rr.(p < q))
rl.{a) = (a) (2.41)

)

rl.p<1q) = q = rlp (2.42
As examples we have
rr{0123)=(3012) and 7.(0123)=(1230)

From the definitions of rr and rl it is possible to prove the following identities:

rr.(p | q) d—p | P—q (2.43)

rl(plq) = peq | q<P (2.44)

Finally, we define a permutation function inv : PowerList.X.n — PowerList.X.n, that

we will use in Chapter 4 to prove isomorphisms between interconnection networks.

inv.(a) = (a) (2.45)
inv.(p | q) = invp X invg (2.46)

It is simple to show that
inv.(p > q) =inv.p | invg (2.47)

The functions rev, rr, rl and inv are permutation functions, i.e., they rear-
range the elements of a PowerlList. Permutation functions have inverses and enjoy

the property that they distribute over scalar operators, as stated by the following

Lemma:

28

www.manharaa.com

Lemma 3 Let X be a scalar type, ~: X — X be a unary, prefix operator,
® : X x X — X be a binary operator, A : X x X — Bool be a binary relation, and

f : PowerList.X.n — PowerList.X.n be a permutation function, then:

f(~p) = ~fp (2.48)
flp®aq = fp ® fqg (2.49)
pANqg = fp fq (2.50)

This lemma is difficult to prove within the PowerList theory, without introducing
explicit indices?. Informally, the lemma holds since scalar operators and relations are
applied to elements, regardless of their position in the PowerList; it does not matter
whether this application takes place before or after the elements are permuted. We
omit the proof of the Lemma, since it is not very interesting and involves defining

a new notation for index-based reasoning.

2.2 Hypercubes

Like PowerLists, hypercubes only come in sizes that are powers of two. They also
share the property that two hypercubes of the same size can be combined into a
single hypercube of twice the size. Many commercial supercomputer architectures
are based on the hypercube, e.g. NCube’s Mediacube series.

An n-dimensional hypercube can be viewed as a graph with 2" nodes, each
uniquely labeled with an n-bit string. Two nodes are connected by an edge if their
labels differ in exactly one position, so each node has n neighbors. We note that
the diameter (maximum distance between any two nodes) is n.

The hypercube topology is very versatile, and many topologies can be em-

bedded in the hypercube; Leighton [Lei92] shows a number of these embeddings.

2For a specific permutation function it is straightforward to establish that the the lemma applies.
For instance, we proved (2.48) for rev by proving (2.28).

29

www.manharaa.com

We will consider a mapping of a PowerList function to a hypercube to be effi-
cient if each parallel step of a corresponding mapping to a CREW PRAM is equiv-
alent to a constant number of basic operations and communications with neighbors
on the hypercube.

Two hypercubes, each of size 2", can be combined and labeled in n + 1
different ways, in an “orderly” fashion, to form a hypercube of size 2"*!, one for
each position: connect the nodes from the two cubes with the same label by an
edge, and relabel each node to an n + 1 bit index by shifting the bits from a fixed
position one position to the left. The nodes from the first cube all obtain a zero bit
in the fixed position, whereas the nodes from the second cube obtain a one bit.

There is a strong connection between PowerLists and hypercubes: if we label
each element of a PowerList of length 2" with a bit string (of length n), representing
the position of the element in the PowerList, this element can be mapped to the
node with the same label on a hypercube of size 2. We refer to this representation
as the standard encoding. By the construction above, it follows by induction that
the zip (tie) of the representation of two PowerLists can be implemented efficiently

by combining the representing cubes in the low (high) order bit.

2.3 A Cost Calculus for Powerlists

In this section we will present a cost calculus for the PowerList algebra, building on
the general framework that we developed in Chapter 1. This approach is somewhat
naive, since we do not provide an operational model of the parallel architectures.
This means that we can only state, but not prove the more involved results.

By cost we mean the time it takes to evaluate a function on a particular
architecture. We do this by introducing a function for the architectures we study:

P for PRAM, H for hypercube. Each of these functions is of the type

(PowerList.X — PowerList.X) x Nat — Real

30

www.manharaa.com

They return the time it takes to evaluate the given function on an argument PowerList
whose loglen is equal to the second argument on the architecture. As an example
P.rev.n is the time it takes on a PRAM to reverse a Powerlist whose loglen is n
using the function rew.

To simplify the calculus we assume that each architecture has enough pro-
cessors to evaluate the function on the given argument. This is done so we can focus
on the idealized time it takes to evaluate the function. In a more realistic scenario
where there are not enough processors, each processor acts as a PRAM simulation
on the data elements assigned to it. Since the PRAM is the most powerful parallel
model we consider this does not invalidate any claim we make.

A hypercube implementation can be simulated with a constant factor slow-

down on a PRAM, stated formally by:

~f=Pf O HYf)

2.3.1 Basic Functions

First, we present the basic functions that will be used in evaluating the running
time of algorithms, along with the complexity we assume that they have on the two

architectures:

swaptie.(p | q) = q | p (2.51)

swapzip.(p < q) = g p (2.52)

The two swap functions correspond to very simple data movements. On a
PRAM these operations can clearly be performed in a constant number of steps.
On a hypercube this is not so obvious. Under the standard encoding each element of
a PowerList is mapped to the processor with the same binary index as the element.
swaptie correspond to exchanging values between neighbors in the highest dimension;

similarly, swapzip corresponds to an exchange in the lowest dimension. Hence it is

31

www.manharaa.com

clear that this operation can be performed in constant time. In summary we have:

P.swaptie O one (2.53)
H.swaptie O one (2.54)
P.swapzip O one (2.55)
H.swapzip O one (2.56)

As an example we analyze the running time of the function sum as defined by (2.23):

(An :: H.sum.(n + 1))
= { Definition of sum (2.23) }
(An 2 H.suman + H.! +' .n)
< { By Lemma 2 (1.13) there exists a ¢ }
(An 2 H.sum.n + c)
O { Solve recurrence, Lemma 2 (1.11) }
id
Since we established that H.swaptie = P.swaptie we can conclude that P.sum O id.
Since the second arguments of P and H are the logarithmic length of the PowerList,
the above results corresponds to a logarithmic execution time.
Let us turn to analyzing the reverse function rev, defined by (2.19) and (2.20)

in Section 2.1.2: we get:

(An :: Horev.(n + 1))
= { Definition of rev }

(An :: Horev.n + H.swaptie.n)
< { By Lemma 2 (1.13) there exists a ¢ }
(An :: Horev.n + c)

O { Solve recurrence }

32

www.manharaa.com

The above result is “tight” for the standard encoding on the hypercube. An element
moves to a processor whose index is the inverted bit string of the index of the
processor where it was located. On a hypercube this means that the element has to
traverse all dimensions, i.e., id O H.rev .

The recursive definition of rev corresponds closely to how the function be-
haves on a hypercube, but on a PRAM all but one of these exchanges are superfluous,
since the rev operation can be achieved by performing the movement from the source
to the the destination in one step. Note that in the case of sum the elements of the
PowerList are changed (i.e., added together) in each step and the steps cannot be
collapsed. The above derivation is still correct, i.e., P.rev O id, but the bound for

rev is not tight. By doing a slightly different analysis for the PRAM, we get:

(An :: Porev.(n + 1))
= { Definition of rev and property of PRAM }
(An :: Porev.n)
O { Solve recurrence }
one
A similar situation arises when we study the operator — (and dually <)
defined in Section 2.1.2 by (2.29) and (2.30). On a hypercube the operation corre-
sponds to moving an element at node ¢ to node i + 1 if we interpret the identity of
nodes as natural numbers. From the calculus of binary numbers it is well known
that the Hamming distance between 2" and 2" — 1 is n + 1. This means some ele-
ments in the PowerList need to traverse all dimensions of the hypercube under the

— operation. Through a similar derivation as given for rev we get
H— O id

As was the case for rev, we can prove that
P.— O one

33

www.manharaa.com

2.4 Prefix Sum

The prefix sum algorithm is one of the most fundamental parallel algorithms. It is
often used as a building block for other parallel algorithms [Ble89, Ble90, Ble93].
We will see its use in the specification of the Carry lookahead adder in Chapter 3.
Given a PowerlList of scalars and an associative, binary operator ¢ on these scalars,
the prefix sum ps returns a PowerList of the same length where each element is the
result of applying the operator on the elements up to and including the element
in that position in the original PowerList. For example, if & is addition over the
integers we have:

ps.(3205) = (355 10)

More formally, the prefix sum of a PowerList p, where p € PowerList.Y.n and
the data type Y has the property that (Y, +,0) is a monoid, can be defined [Mis94]

as the (unique) solution to the equation (in u):
u=(0—u) ®p (2.57)

A proof that (2.57) has a unique solution can be found in [Ada94].

We define the function ps: Powerlist.Y.n — PowerList.Y.n to realize a well
known algorithm for computing the prefix sum due to Ladner and Fischer [LF80].
This algorithm has roots in an algorithm presented by Ofman [Ofm63] and later
implemented on a perfect shuffle network by Stone [Sto71]. Misra [Mis94] derived

the algorithm for PowerLists; we show a slightly different derivation below:

u v

= { define u<tv:=ps.(p>gq) }
ps-(p > q)

= { defining equation for ps (2.57) }
O—=ps.(pr<q) ©pr<ig

= { definition of u,v }

34

www.manharaa.com

0= (uiv) & pxig
= { —(2.30) }
O—v<tu B pxgq
= { >,® (2.15) }
(0—=v @& p) < (udq)
Summarizing:
u<iv = 020 dp X udyq
= { Axiom (2.10) }
u=0=2vE&p N v=udq
= { solving for v }
u=0=v®&p A v=(0—>vDp) ®q
= { @ is associative }
u=0=2vSp A v=0=0v (pdq)
= { defining equation for ps (2.57) }
u=0=v&p AN v=ps(p®dq)
= { solving for u }
u=0-ps.(p®q) Bp N v=ps(p®q)
= { definition of u,v and Axiom (2.10) }
ps.(prq) = 0=ps(p©q) ©p > ps.p @ q)

Above we have derived the following algorithm for computing the prefix sum:
ps.{a) = (a) (2.58)
ps.(p=q) = (0=t @ p) < t, wheret=ps.(p D q) (2.59)
2.4.1 A Hypercube Algorithm for Prefix Sum

Ladner and Fischer’s algorithm is not efficient when mapped onto hypercubes using
the standard encoding of PowerLists, since the — operation cannot be performed

efficiently under this encoding. As we discovered in Section 2.3, adjacent elements

35

www.manharaa.com

of the PowerList can be as far apart on the hypercube as its diameter. We have
(An::n?) O H.ps (2.60)

We will address the general problem of mapping operators like — efficiently onto
hypercubes in Section 2.5, aiming for a logarithmic execution time.

As noted in Section 2.3 both zip and tie can be performed efficiently on a
hypercube under the standard encoding. Thus we can obtain an efficient algorithm
by eliminating the — operation from (2.59).

We generalize the defining equation for prefix sum (2.57) to the function cube_ps in

two arguments:

cube_ps : PowerList.Y.n x PowerList.Y.n —> PowerList.Y.n

defined by the equation:
cube_ps.p.q = 0—ps.p @ q (2.61)
It follows from the defining equation for ps.r (2.57) that:
ps.r = cube_ps.r.r
We explore the definition of cube_ps:

cube_ps.(p > q).(u > v)

= { defining equation for cube_ps (2.61) }
0—=ps.(pq) & (u<wv)

= { Ladner & Fischer (2.59), where t = ps.(p ® q) }
0=((0—=t @ p)=t) & (uxiv)
= { definition of — (2.30) }

0=t (0=t ®p) & (u<iv)
= { commutativity &, (2.15) }

36

www.manharaa.com

0=t Du x (0=t dp) Go

= { associativity of & }

0=t ®u x 0=td (p @)

= {t=ps(pDq)}

0—=ps.(p @ q) ®u ta 0-ps.(p @ q) & (p & v)
= { definition of cube_ps }

cube_ps.(p ® q).u > cube_ps.(p ® q).(p & v)

This gives the following recursive definition of cube_ps:

cube_ps.(a).(b) = (b)

cube_ps.(p > q).(u < v) = cube_ps.(p & q).u > cube_ps.(p & q).(p B v)

By using two variables the — operator has disappeared; thus the algorithm can be

implemented efficiently on the hypercube. We have
H.cube_ps O id (2.62)

through a similar derivation as was performed for sum in Section 2.3. The algorithm
cube_ps is well known in the literature [MP89, J4J92], and is considered as part of the

folklore; its close connection to the algorithm by Ladner and Fischer is interesting.

2.5 Mapping PowerlLists Onto Hypercubes

So far we have studied the standard encoding of PowerLists onto hypercubes. We
saw that this encoding poses a problem with certain operators on the hypercube,
such as the — operator and the reverse function rev. In this section we introduce
the reflected Gray coding. We utilize this encoding as a domain transformation like
the Fourier Transform, transforming the operands into a domain where operations
like — can be performed efficiently. We then study how a class of functions using

the fundamental operators can be implemented efficiently under this encoding.

37

www.manharaa.com

The Gray coding was invented by Dr. Frank Gray to lower the data loss
when transmitting signals across noisy wires. The coding was patented by his
employer, Bell Labs, in 1953 [Gra53]. The reflected Gray coding of a PowerList
permutes the elements in such a way that neighboring elements in the original
PowerlList are placed in positions of the coded PowerList whose indices written as
a binary string only differ in one position. We define the permutation function

gray : PowerList.X.n — PowerList.X.n as a realization of the reflected Gray code
gray.(a) = (a) (2.63)
gray.(u | v) = gray.u | gray.(rev.v) (2.64)
As an example we have:
gray{abcdefghy=(abdchgef)
The time complexity of gray on a hypercube is:
H.gray O id (2.65)

Note that this property does not follow directly from (2.64); more properties of the
hypercube are necessary to establish it?. From this point onward we will not be able
to prove the stated complexity results within the Powerlist model, they should only
be taken as conjectures.

An interesting property of gray is
gray.((p =< u) =< (¢>=wv)) = (gray.p=<tv) <1 (gray.q > u) (2.66)
The inverse function of gray is yarg, defined by:

yarg.(a) = (a) (2.67)

yarg.(u | v) = yarg.u | rev.(yarg.v) (2.68)

3The proof of a more general complexity result, presented in a different formalism, can be found
in [JHO5].

38

www.manharaa.com

2.5.1 The Gray Coded Operators

Next we study how operators in the PowerList notation can be implemented in the

Gray coded domain. For a binary operator T and unary operator f, this amounts to

defining the Gray coded counterparts: 1¢ and § with the properties:
gray.ut€ grayv = gray.(uto) (2.69)
1 (grayu) = gray.(1u) (2.70)

Scalar Operators

The simplest operator to study is a scalar operator @. We define &%, the Gray

coded version of & by:

gray.u & gray.v = gray.(u & v) (2.71)
Since gray is a permutation function, we have by Lemma 3

gray.(u & v) = gray.u & gray.v (2.72)
There is no point in introducing a special & operator since &% = @ from (2.71)
and (2.72).
The < operator

In order to implement < under the Gray coded mapping, we define the operator
< satisfying:

gray.u < gray.v = gray.(u < v) (2.73)

By defining a permutation function cube_even, that is efficient to implement on a

hypercube, with the property

gray.(u < v) = cube_even.(gray.u < gray.v) (2.74)

39

www.manharaa.com

the complexity of = is the same as that of . Note that it is a simple consequence
of (2.73), (2.74) and the existence of yarg that:

u % v = cube_even.(u > v) (2.75)

We proceed by exploring what properties are needed of cube_even in order to prove

the inductive step for (2.73).

cube_even.(gray.(u | v) > gray.(p | q))

= { definition of gray (2.74) }

cube_even.((gray.u | gray.(rev.v)) < (gray.p | gray.(rev.q)))

= { commutativity <, | (2.12) }

cube_even.((gray.u < gray.p) | (gray.(rev.v) > gray.(rev.q)))

= { define cube_even.(u | v) = cube_even.u | cube_odd.v, see below }
cube_even.(gray.u < gray.p) | cube_odd.(gray.(rev.v) <1 gray.(rev.q))
= { induction, see (2.76) and (2.77) below }

gray.(u < p) | gray.(rev.q <1 rev.v)

= { property of rev(2.21) }

gray.(u > p) | gray.(rev.(v > q))

= { definition of gray (2.64) }

gray.((u = p) | (v < q))

= { commutativity Axiom (2.12) >,| }

gray.((u [v) o< (p | q))

Two equations were left unproven in the above:

cube_even.(u | v) = cube_even.u | cube_odd.v (2.76)

cube_odd.(gray.u < gray.v) = gray.(v > u) (2.77)

We use (2.76) as the definition of cube_even, along with the two base cases:

cube_even.(a) = (a) (2.78)
cube_even.({a) | (b)) = (a)|(b) (2.79)
40

www.manharaa.com

The proof of (2.77) is similar to the inductive proof given for (2.73), yielding

the following definition of cube_odd:

cube_odd.(a) = (a) (2.80)
cube_odd.((a) | (b)) = (b) | (a) (2.81)
cube_odd.((u |v) | (p|q)) = cube_odd.(u|v) | cube_even.(p|q) (2.82)

cube_even.(u > v) is the permutation on u > v that swaps each element of u with
index (in u) of odd parity with the element in v with the same index. The two
PowerLists are then zipped back together. If the list u > v is encoded directly on
the hypercube, this operation can be performed efficiently by swapping elements

among the nodes with this property, i.e.
H.cube_even O one A H.cube_odd O one

It is a simple exercise to show that both cube_even and cube_odd are their
own inverses (involutions).
The | operator

Next we explore an efficient implementation of | under the Gray coding. Just as we

introduced <% to satisfy commuting property (2.69), we introduce |“:

gray.p | gray.q = gray.(p |) (2.83)
and continue by exploring this definition

p|%q
= { gray and yarg are inverses }
gray.(yarg.p) | gray.(yarg.q)

= {19283}

gray.(yarg.p | yarg.q)

41

www.manharaa.com

— { gray (264))
gray.(yarg.p) | gray.(rev.(yarg.q))
= { gray and yarg are inverses }
p | gray.(rev.(yarg.q))
We continue by exploring the right hand side
gray.(rev.(yarg.(u | v)))
— { yarg (268))
gray.(rev.(yarg.u | rev.yarg.v))
= { rev (2.20) is an involution }
gray.(yarg.v | rev.(yarg.u))
= { gray (26))
gray.(yarg.v) | gray.(rev.(rev.(yarg.u)))
= { gray, yarg are inverses; rev is an involution }
v | gray.(yarg.u)
= { gray and yarg are inverses }
ulw

Putting the above together we define the permutation function flip:

fiipda) = (a) (2.84)
fuip-((a) [(b)) = (a) | (b) (2.85)
fip((plq) | (wlv)) = (pla) | (v]|uw) (2.86)

with the property
flip(p1a) =p 1% q (2.87)

flip has an efficient implementation on a hypercube: nodes with a one in the highest

bit of the label exchange their value with their neighbor in the next to highest

dimension:

H.flip O one

42

www.manharaa.com

The — operator

The — operator is defined in terms of the fundamental operator <. We define the

Gray coded equivalent in terms of the Gray coded =< operator:

a3) = (a) (2.88)

aE)(UIXIG'U) = aSux=Cu (2.89)

This operator can be implemented in constant time on the hypercube, since neigh-
boring elements of the PowerlList are neighbors on the hypercube under the Gray
coded mapping;:

HS% O one

Note that this property does not follow directly from (2.89), since a proof that
utilizes adjacency is needed; such a proof seems to lie outside of the PowerList
theory.

The operator & gatisfies the commuting property in (2.70), i.e.
G
a— gray.u = gray.(a—u) (2.90)

Proof of (2.90), base case omitted. Inductive step:
q
a— gray.(p > q)
= { =% (2.73) }
al (gray.p <% gray.q)
— { 5 (289) }
G G
a— gray.q < gray.p
= { induction (2.90) }
gray.(a—q) <9 gray.p
= { =% (2.73) }
gray.(a—q > p)
= { —(2.30) }

gray.(a—(p = q))

43

www.manharaa.com

End of Proof

We have shown that under Gray coding the fundamental operators and some
derived operators have efficient implementations on the hypercube. From the above
it does not follow that all PowerList functions can be implemented as efficiently on
a hypercube as on a PRAM. The Gray coding satisfies (2.65) H.grayDid, but a
PowerList function that takes less time on a CREW PRAM, like the function —,
is not implemented efficiently due to the overhead introduced by the Gray coding.
However, as shown below, when — is used in Ladner and Fischer’s prefix sum

algorithm, the Gray coded implementation on a hypercube is efficient.

2.5.2 Ladner and Fischer’s Algorithm Revisited

As we observed, properties from the original theory carry over into the Gray coded
domain. As an example we revisit the Ladner and Fischer algorithm for prefix sum.
Using the Gray coded operators we can define the Gray coded version of Ladner

and Fischer’s algorithm:

psg-(a) = (a) (2.91)

psg.(p=<C q) = 0—=r@p = r where r = psg.(p & q) (2.92)

psg satisfies the commuting property:

psg.(gray.p) = gray.(ps.p) (2.93)

Proof Induction, base case is omitted:
psg-(gray.(p > q))
= { =% (2.73) }
psg.(gray.p < gray.q)
= { psg(292) }

G
0= psg.(gray.p @ gray.q) ® gray.p >

psg.(gray.p © gray.q)

44

www.manharaa.com

= { @ isscalar (2.15) }
G

o

G
= psg.(gray.(p ® q)) ® gray.p > psg.(gray.(p & q))

= { Induction hypothesis (2.93) }

05 gray.(ps.(p ® q)) © grag.p = gray.(ps.(p @ q))
= { % (2.89)})

G

gray.(0—=ps.(p © q)) ® grayp =< gray.(ps.(p © q))

= { @ is scalar, gray is a permutation function, Lemma 3 (2.49) }

9 gray.(ps.(p @ q))

gray.(0— ps.(p & q) ® p)
= { =% and gray (2.73) }
gray.(0—=ps.(p @ q) ©p > ps.(p © q))
= { ps(259) }

gray.(ps.(p = q))

End of Proof

Since each of the Gray coded operators have efficient implementations, we have ob-
tained an efficient implementation of Ladner and Fischer’s algorithm for hypercubic

architectures.

2.6 Fast Fourier Transform

In this section we present the Discrete Fast Fourier Transform algorithm as it was
derived for PowerList by Misra [Mis94]. The succinctness of the PowerList description
illustrates the expressive power of having both > and | in the PowerList notation.
The Discrete Fourier Transform is an important tool used in many scientific
applications, especially in digital signal processing. It can be used for time series
analysis, convolutions and to solve partial differential equations. The transform
maps a sample from a cycle of data points of a periodic signal onto a frequency

spectrum representation containing the same number of points.

45

www.manharaa.com

The Fast Fourier Transform is a method to compute the Discrete Fourier
Transform made popular by Cooley & Tukey [CT65]. Misra [Mis94] derived this al-
gorithm from its definition. The function fft: PowerList.n.Com — PowerList.n.Com

can be written as:

fitla) = (a) (2.94)
Frloag) = (r+uks)|(r—uxs) (2.95)
where 7 = fftp
s = fftq
u = powers.z.p
2 = root.(length.(p > q))

where root : Nat — Com applied to n returns the nth root of unity:

7k /—1
rootn = e=w (2.96)

and the function powers : Com x PowerList.X.n — PowerList.Com.n is defined by

powers.x.{a) = (a°) (2.97)

powers.z®.p > map.[zx].(powers.z?.q)) (2.98)

powers.x.(p > q)
where [z%] : Com — Com is the scalar function that multiplies its argument by x:
[zx].y =2 %y (2.99)

The function powers.x.p returns a PowerList of the same length as p containing the

powers of x from 0 up to the length of p, for example:
powers.3.(a b ¢ d) = (1 3 9 27)

As an example of applying fft we have:

VA =V 2 14VA) = (3+vA1 0 1+VA —442xA1)

46

www.manharaa.com

2.7 Sorting

This section focuses on the derivation of the odd-even transposition sort as a PowerList
function. It turns out that this algorithm is difficult to express in PowerList since it
does not have a simple recursive description. We start the section by presenting two
sorting networks, batcher and bitonic, due to Batcher [Bat68] that Misra [Mis94]
gave elegant PowerList descriptions of. These descriptions are included to show that
the PowerList can be used effectively and elegantly to specify sorting algorithms.
We study sorting over a totally ordered domain (M, <). For specification
purposes we assume that M contains a minimum element — and a maximum element
T and that the symmetric and associative operators 1 (for maximum) and | (for

minimum) are defined by:

Ve,y:x,ye M:axty=y = z<y) (2.100)
Ve,y:x,yeM:axly=y = y<ux) (2.101)
Ve:zeM:—<z A z<T) (2.102)

In [Mis94] Misra presented two sorting networks due to Batcher [Bat68], the
Bitonic sort and the Batcher merge. We present these networks below, using a

slightly modified syntax. First, we present the Batcher sort
batcher : PowerList.M.n — PowerList.M.n

defined in terms of the auxiliary operators { and J:

batcher-(z) = (z) (2.103)
batcher.(p< q) = batcher.p 1 batcher.q (2.104)
(z)U{y) = (2)T(y) (2.105)
(pag)i(upav) = (prv)T(qlu) (2.106)
plqg = (pla) = (ptq) (2.107)

a7

www.manharaa.com

The Bitonic sort

bitonic : PowerList.M.n — PowerList.M.n

is defined by:

bitonic.(z) = (z) (2.108)

bitonic.(p < q) = bitonic_merge.(bitonic.p | rev.(bitonic.q)) (2.109)
bitonic_merge.(z) = (x) (2.110)
bitonic_merge.(p < q) = bitonic_merge.p T bitonic_merge.q (2.111)

To prove the correctness of these networks, Misra used the 0-1 principle,
which states that a compare-and-swap sorting algorithm is correct iff it sorts all in-
puts consisting of Os and 1s. The 0-1 principle is often attributed to Knuth [Knu73],

where Batcher’s networks are also presented.

2.7.1 0Odd-even Sort in PowerLists

We will study the odd-even sort which can be considered a parallel version of bubble
sort; it is simple to implement and to explain operationally, yet it is inefficient and
somewhat tedious to prove correct*. The algorithm consists of a sequence of phases,
where each phase consists of an “even” step followed by an “odd” step. It is often

described operationally as follows [Lei92]:

“At odd steps, we compare the contents of cells 1 and 2, 3 and 4, etc.,
exchanging values if necessary so that the smaller value ends up in the
leftmost cell. At even steps, we perform the same operation for cells 2

and 3, 4 and 5, etc.”

*As a parallel sorting technique the odd-even sort is well established in the literature [Sew54,
Dem56]. Knuth [Knu73, exercise 5.3.4.37] poses its proof of correctness as an exercise.

48

www.manharaa.com

In contrast to Batcher’s networks, the odd-even sort is iterative in nature and
does not have a simple definition in the PowerlList notation. Our derivation is some-
what surprising: from a simple characterization of what it means for a PowerList to
be sorted, the algorithm emerges through a series of transformations. The remain-
ing proof of correctness consists of proving that after a finite number of phases of
the computation, odd-even sort reaches a fixpoint, and that each phase produces a
permutation of the input.

In order to derive the algorithm we use the operators — and <, defined by

(2.29) (2.32). They are monotonic in both arguments:

r<y AN p<gqg = z—=p<y—q (2.112)

<y ANp<q = pex < gy (2.113)
and they distribute over scalar operators (like Tand |):

z—=(ptq) = z=plta—g (2.114)

(ptg)= pzlgx (2.115)

These properties are simple to prove by structural induction.

A PowerlList is ascending when the value of every element in the PowerList 4s
at most the value of its right neighbor. In the PowerList notation this can be written
using the — operator:

ascendingp = ——p<p (2.116)
The dual way to express this, using the < operator, is

ascending.p = p<p«T (2.117)

We will use both (2.116) and (2.117) in our derivation of the odd-even sort. They

can be generalized into a Galois-connection between (the Curried functions) ——

and < T

~=q<p = ¢<peT (2.118)

49

www.manharaa.com

legitimizing the use of the word “dual”; (2.118) can be proven by structural induc-
tion.
In the rest of this section we assume that the elements of the PowerLists are

distinct; this implies that for a PowerlList p < ¢ we have:

PEGADPF ——=p ANpFEpeT AN q# ——q N qF#qT

This property can be established by extending the order on the elements of a
PowerlList to a lexical order in the standard way; that is, by using the position
of an element in the PowerList as the second component of the lexical order.

We state the following equalities that generalize properties of T and | on
scalars from M to PowerLists over M. For similar PowerLists u, v, with the property

uF#v A uFr we have:

(ulv)fr=u = wlv=u A utr=u (2.119)
(uto)lr=u = utv=u A ulr=u (2.120)
utvtr=u = utv=u A ufr=u (2.121)
wlvlr=u = ulv=u A ulr=u (2.122)

We only prove (2.119) as the remaining proofs are similar. The only property

of 1+ and | that is used, stated below, follows from (M, <) being total:

(Vz,yu (xty=2 V zty=y) A (zly=2 V zly=y)) (2.123)

Proof Base case

((a) 1 {8)) 1 (c) = (a)
= { c#a AN b#a, (M, <) is total (2.123) }

(a) L {b) = (a) A {a)1(c) = (a)

Inductive step

(pag)l(uv))t(r>=s)=pgq

20

www.manharaa.com

= { commutativity (2.12) }
(pdu > glu)t(r=s)=pxg
= { commutativity (2.15) }
(pdu)tr) o ((glv)Ts) =prag
= { unique decomposition (2.10) }
(plu)tr=p A (¢glv)ts=q
= { induction (2.119) }
plu=p AN ptr=p AN qglv=q AN qTs=gq
= { unique decomposition (2.10) }
plu > glv=pxiqg AN pTr < qts=pgq
= { commutativity (2.15) }
(p=g)l(uv)=peag A (pag)t(r=s)=prig
End of Proof

We proceed in the derivation of the odd-even sort by deriving two recursive defini-

tions of ascending from (2.116):

ascending.(p < q)

= { ascending (2.116) }
——=(p>q) < pyg

= { —(2.30) }

——qXp < pMg

= (<17}

—=¢<p ANp=g

= { transitivity of <}
—=q<p ANpsSq AN ——=q=q
= { monotonicity of — }
—=qS<p ANPSqgN —=qgSqg N —=p S ——q

= { transitivity of < }

ol

www.manharaa.com

—=q<Sp ANpSq AN ——=¢<q N —=p=p
= { ascending (2.116) twice }

——q<p AN p<gq A ascending.q N ascending.p (2.124)
= { Galois-connection (2.118) }

_ _ (2.125)
g<p+<T A p<gq A ascending.q N ascending.p

We continue by exploring the conjunction of the definitions of ascending given by

(2.124) and (2.125) above:

ascending.(p > q)
= { expanding (2.124),(2.125) and the definitions of ascending (2.116),(2.117) }
P<qg AN ——=p<p A ——=qg<p N qg<psT AN g<geT
= { 1] calculus (2.101) (2.100) }
plg=p N ——=ptp=p N ——qtp=p
ANpltg=q N qlp<=T =q A qglge=T =¢q
= { 1] calculus; (2.119) u,v,r :=p,q, ——p (2.120) u,v,r := q,p,q< T }
pla=p N (plg)t——=p=p A ——qtp=p
ANptg=qg N (pTqg)lag=T =q N qlp<=T =¢q
= { 1,] idempotent }
pla=p AN plo)T @l ——=p=p A ——qtp=p
ANptg=q N (ptq)l T le=T =q N qlp=T =¢q
= {1,/ idempotent, (2.121) u,v,r :=p,plq,(pLq) T ——p
(2.122) w,v,r:==q,pTq, (Pt q) L g<T }
pt(plg)T—=p=p N —=qtp=p
ANaglpTa)leg=T =q N qlp<=T =¢q
= { 1] calculus, (2.121) u,v,r :=p,(plq) T ——p, ——q¢
(2.122) w,v,r:=q,(pTq) Lg&T,p&=T }
——=pt——qT(plg)=p N (pT@)lpc=Tlg+T =¢q
= { — (2.114), « (2.115) }

02

www.manharaa.com

——=@tgtplg =p AN T lplgy«T=4q
= { Axiom (2.10) }

pxqg = —={ptg)tplqg) =< (ptq)lplg)«T

From the equality derived above we can conclude that ascending characterizes the

fixpoints of the function oddeven, defined by:

oddeven.(z) = (z) (2.126)

oddeven.(p<q) = ——=(pTq)T(plq) = pTq)l(plg)T (2.127)

Note that p and ¢ only appear as pl g and p1q in (2.127). We can thus split the

definition of oddeven into its even phase (even) and its odd phase (odd):

even.(praq) = plqg = plyq (2.128)
even.z) = (z) (2.129)
odd.(uiv) = ——vtu > vlueT (2.130)
odd(z) = () (2.131)
oddeven.p = odd.(even.p) (2.132)

2.7.2 Proving that oddeven Terminates

We proceed by showing that a finite number of applications of oddeven will converge

to a fixpoint, i.e., termination.
(Vp: (3n:n>0: oddeven™ V) p = oddeven™ p)) (2.133)

If we can establish termination (2.133), we have by the derivation above for a suffi-
ciently large n:

ascending.(oddeven™.p) (2.134)

In order to prove termination (2.133) we introduce the lexical ordering (<) over

PowerLists:

Plag < @m|v) = (p<u) V(p=uAqg=<v) (2.135)

23

www.manharaa.com

(z) < (y) = z<y (2.136)

Since oddeven returns a permutation of its argument PowerList (this will be proven
in Section 2.7.3) it follows that the elements of both PowerLists come from the same,
finite subset L of M. By the finiteness of L we have that (L, <) is well-founded. By
construction it follows that < is also well-founded on PowerLists whose elements are
in L; i.e., a sequence consisting of permutations of a PowerList p, where neighboring
elements are related by < is finite. The PowerList that is the result of sorting p is
as small as any element of such a sequence.

We proceed to prove separately that the result of applying even and odd to a

PowerList either returns the PowerList itself or a PowerList that is lexically “smaller”:

Lemma 4

evenp=p V evenp <p (2.137)

oddp=p V oddp=<p (2.138)

(2.133) now follows from Lemma 4 and (2.132), by the well-foundedness established
above. We proceed by proving (2.137) and (2.138) separately.

The following equality (2.139) is a simple consequence of the definition of
even; because < is defined with the | operator, it is needed in the proof of Lemma
o:

length.p > 2 A length.q > 2 = even.(p | q) = even.p | even.q (2.139)

(2.137) follows, by predicate calculus, from the following Lemma.
Lemma 5
even.p < p = —(even.p =p) (2.140)

Proof Base cases: (a) by inspection, (a) | (b)

even.({a) | (b)) < (a) | (b)

o4

www.manharaa.com

= { Axiom (2.11), even (2.129), Axiom (2.11) }
(alb) | (a1 b) < (a)| (D)
= { < (2.135)}
alb<a V (alb=a A athb<b)
= { ~(atb<b)}
b<a
= { 1 l-calculus }
~(alb=a A ath=bh)
= { Axiom (2.11), even (2.129), Axiom (2.11) }
—(even.({a) | (b)) = (a) | (b))
inductive case (length.p > 2):
even.(p | q) < plg
= { evenand | (2.139) }
even.p | even.q < plq
= { < (2135}
even.p <p V (even.p=p A even.q < q)
= { induction (2.140) }
~(even.p =p) V (evenp=p A =(even.q = q))
= { predicate calculus }
—(even.p =p A even.q=q)
= [Axiom (2.9) }
—(even.p | even.q = p|q)
= { evenand | (2.139) }
~(even.(p | ¢) = p|aq)

End of Proof

In order to prove (2.138), we need a little more machinery. First we generalize the

95

www.manharaa.com

definition of odd (2.131)

genodd.x.(p<q)y = z—qTp X qlp+y (2.141)

odd.(p=<q) = genodd.—.(pr<q). T (2.142)

Note that the function genodd is only defined for PowerLists of length at least 2.
The following equality (a consequence of the definitions of — and <) provides

an alternative to (2.141) with | as the constructor:

length.p > 2 A length.q > 2 = genodd.z.(p | q).y = genodd.z.p.q | genodd.p.q.y

(2.143)
(2.138) follows by the instantiation z,y := —, T in lemma 6 (2.144), below.
Lemma 6
genodd.xz.(p | @)y < plqg = <P A —(genodd.z.(p|q)y= (p|q)) (2.144)

Proof Base case omitted. Inductive case, length.p > 2 A length.q > 2:
genodd.x.(p | q)y < plyq
= { genodd and | (2.143) }
genodd.z.p.q | genodd.P.qy < plq
= { < (2135)}
genodd.x.p.q <p V (genodd.z.p.q =p A genodd.D.q.y < q)
= { induction (2.144) }
(<P A —(genodd.xp.q = p))
V (genodd.x.p.d =p A P<q A —(genodd.D.q.y = q))
= { see (2.145) below, genodd.z.p.d =p = P < q }
(<P A —(genodd.x.p.q = p))
V (genodd.z.p.d =p N —(genodd.D.q.y = q))
= { see (2.145) below, genodd.z.p.d =p = <P }

(<P A —(genodd.xp.q = p))

o6

www.manharaa.com

V (<P A genoddzp.d=p N —(genodd.D.q.y = q))
= { abbreviate u,v := genodd.x.p.q, genodd.D.q.y }
(<P A =(u=p) VvV (@<P Au=p A ~(v=q)
= { predicate calculus }
z<P A (-(u=p) V (u=p A =(v=0)

= { predicate calculus }

<P AN =(u=p A v=yq)
= { Axiom (2.9) }
<D A (ulv=plg)

= { abbreviations u,v := genodd.z.p.q, genodd.P.q.y }
£ <P A —(genodd.z.p.q | genodd.D.q.y =p| q)

= { genodd and | (2.143) }

t <P A =(genoddx.(p | q)y=p|q)

End of Proof
The proof of Lemma 6 left us with the proof obligation:
genodd.arb=r = (a<¥ A 7 <b) (2.145)

this is a simple consequence of the definition of genodd.

2.7.3 Proving that oddeven Permutes its Inputs

In the section above we proved that oddeven reaches a fixpoint and that this fixpoint
is indeed a sorted PowerList. The only remaining obligation is to prove that oddeven
permutes® its input. The key observation is that oddeven only exchanges neighboring
elements, and only if they are out of order. Our approach is to divide PowerLists

into appropriate sets of neighboring pairs and prove that the functions even and odd

®Note that saying that a function permutes its inputs does not imply that the function is a
permutation function.

o7

www.manharaa.com

either act as the identity on a pair or swap the elements of the pair. To this end we
define a permutation relation ~ as follows, for PowerLists p, q,u and v of length at

least 2:

(a) [(b) ~ (c)|(d)
(plg) ~ (wlv) = p~uAgeo (2.147)

(a=c Nb=d) V (a=d N b=c) (2.146)

When two pairs are related by ~ they are permutations of each other. Note that
the above definition does not relate singleton PowerLists, as it is a trivial exercise to

show that oddeven acts as a permutation function on singletons.

Lemma 7

even.(p [q) ~ (p|q) (2.148)

Proof Base case:
even.({a) | (b)) ~ (a) | (b)
= { even, (2.129) }
(alb)[(ath) ~ (a)|(b)
= { ~ (2.146) }
(a=alb A b=atb) V (a=atb V b=alb)
= {1 calculus }
true

inductive step for length.p > 2
even.(p | q) ~ plq
= { even, (2.139) }
even.p | even.q ~ p|q
= { ~(2.147) }
even.p ~p N even.q ~ q

= { induction }

true

o8

www.manharaa.com

End of Proof

From (2.148) it follows that even permutes its inputs.

Proving the same result for odd is more complicated. Using the same neigh-
boring pairs as ~ does will not do the job, since odd may move elements between
such pairs. However, by applying the function rr (defined by (2.39) and (2.40)) to

the PowerList, the result is then related to the PowerList by ~.

Lemma 8

rr.(odd.(p | q)) ~ rr.(p]q) (2.149)

In order to prove Lemma 8 we start by exploring when ~ relates the right shifted

argument and the right shifted result of genodd.

z—genodd.x.({a) > (b)).y ~ w—({a) > (b))
= { genodd (2.141) }

z=((zta) > (bly)) ~ w—((a) > (b))

= { —(230)}

(2) pa(z Ta) ~ (w)va(a)

= { Axiom (2.11) }

(2) [(z ta) ~ (w)|(a)

= { ~(2.146) }

(z=w AN xzta=a) V (z=a V z1a=w)

We take the above derivation as the proof of the base case of the following Lemma:

Lemma 9

z—genodd.z.(p| q)y ~ w=(plq) = (z=wAztP=DP)V(z=DAztD =w)

29

www.manharaa.com

Proof base case proven above, assume length.p > 2 A length.q > 2
z—genodd.z.(p | q).y ~ w—(p|q)
= { genodd (2.141) }
z—(genodd.z.p.q | genodd.P.q.y) ~ w—(p | q)
= { —, last.(genodd.z.p.q) =P q }
z—genodd.x.p.q | (Pl 4)—genodd.P.qy ~ w—p | P—q
= [~(2147))
z—genodd.z.p.q ~ w—p A (DL q)—genodd.P.q.y ~ D—q
= { induction (2.150) }

(z=w A ztP=DP) V (z=D A 21D =w))
AN(PLa=DP ADPta=4q) v Bla=9 A P17 =D))

= { 1] calculus }
(z=w A ztP=D)V (z=DP A 21D =w)

End of Proof

Lemma 8 follows from Lemma 9 with the instantiation z,y, z,w := —, T, q,q and
the definitions of the functions genodd, — and rr. This concludes our presentation

of the odd-even sort in PowerLists.

2.8 Summary

The PowerList is a versatile data structure that can be used to describe a range
of different algorithms, including the Fast Fourier Transform, Ladner and Fischer’s
prefix sum algorithm, and Batcher’s sorting networks®. The PowerList theory is
simple, it can be described on a single page. Properties of PowerLists can be proven
using a simple induction principle that closely mimics how PowerList functions are

defined. We derived Ladner and Fischer’s algorithm and an efficient hypercube

SWe take no credit for the PowerList description of these algorithms, they were originally pre-
sented in [Mis94].

60

www.manharaa.com

algorithm for prefix sum from their specifications using equational reasoning over
PowerList.

We established the close connection between the PowerlList notation and hy-
percubic architectures. Using the Gray coded mapping, we obtained efficient im-
plementations of PowerList functions on hypercubic architectures. The Gray coded
operators were obtained by formal derivations from their counterparts under the
standard encoding.

The derivation of the odd-even sorting algorithm was surprisingly elegant.
From a simple characterization of the goal of the algorithm, the algorithm was
derived using properties of PowerLists and total orders. It is encouraging that the
derivation did not use any operational considerations, instead it was a case of letting
the “symbols” do the work. No special consideration was given to the fact that the

odd-even sort is a parallel algorithm; this is one of the strengths of the PowerList

notation.

61

www.manharaa.com

Chapter 3

Parlists

As we saw in Chapter 2 it is possible to specify algorithms such as the Discrete
Fast Fourier Transform and Batcher’s sorting networks elegantly in the PowerList
notation, without resorting to “index gymnastics”. Restricting the lengths of the
inputs to powers of two is reasonable for these algorithms, as they are most often
presented this way in the literature. However, for most algorithms the restriction is
unnatural.

In this chapter we present an extension of the PowerList notation to lists of
arbitrary positive lengths and work through a number of examples. This new data
structure is called “ParList”, which is short for parallel list. Functions over ParLists
are defined using structural induction over the data structure, by a base case for
singleton ParLists and two inductive cases: one for even length and one for odd
length ParLists.

An earlier version of this work was presented in [Kor97b] and [Kor97c] based
on ideas from my advisor, Jayadev Misra [Mis96]. This presentation simplifies the

axioms presented in the earlier versions and presents results that were not provable

in the earlier theory.

62

www.manharaa.com

3.1 ParlList Theory

A ParList is a non-empty list whose elements are all of the same type, either scalars
from the same base type or (recursively) ParLists that enjoy the same property. Two
ParLists are simzilar if they have the same length and their elements are similar; two
scalars are similar when they are from the same base type. We categorize ParLists
according to their length. The shortest ParList has length 1; it is called a singleton.
We denote the singleton containing the scalar = by (z).

A non-singleton ParList v can be deconstructed into a single element and a
ParList whose length is one less than that of v, using the > (“cons”) and the <
(“snoc”) operator:

v=ad>p N v=gq<b (3.1)

where a, b and the elements of p and ¢ are similar to the elements of v, and p
and ¢ are similar Parlists. In (3.1) a is the first element of v and b is the last
element of v. This definition corresponds to linear list theory, which is well-known
from sequential, functional languages such as Miranda™ [Tur86], ML [MTH90] and
Haskell [HIWT92], and from the Bird-Meertens theory of lists [Bir89, BW88, Ski94].

A ParList, p, of even length has the property that it can be deconstructed

using the <t (“zip”) and the | (“tie”) operator:
p=uxuv A p=r|s (3.2)
where u, v, r and s are similar ParLists with the properties:
u contains the elements at the even positions' of p,

v contains the elements at the odd positions of p,

r is the first half of p, and

!Counting starts at zero in this dissertation.

63

www.manharaa.com

s is the second half of p.

Note the similarity to how the operators < and | were defined for PowerLists in
Chapter 2.

We formalize the involved types and lengths by introducing the type function
ParList that takes two arguments, a type and a positive integer, and returns the type

of all ParLists with elements of the given type and length equal to the given length.
ParList : Type x Pos — Type

Using ParList we can give the signature for the ParList operators (X is a type

and n is in Pos, the positive natural numbers)

(_) : X — ParList.X.1

> : X x ParList.X.n — ParList.X.(n + 1)

<a : ParList.X.n x X — ParList.X.(n + 1)

_| - : ParList.X.n x ParList.X.n — ParList.X.(2xn)

x : ParList.X.n x ParList.X.n — ParList.X.(2%n)

We overload the name Parlist, by having it denote the type of all ParLists
(corresponding to ParList.X.n for all X and n) and naming the algebra we define
below. We further refine the type ParList, by introducing the subtype ParList.X that
corresponds to all ParLists whose elements are taken from X. Finally, we partition

the type ParList. X into the subtypes:

Singleton.X = ParList.X.1
EvenParList. X = (Uk :k € Pos : ParList.X.(2xk))

OddParList.X = (Uk:k € Pos : ParList.X.(2xk + 1))

Note that PowerLists is a subtype of ParList, corresponding to the lists whose length

is a power of two (ParList.X.(2") for n € Nat).

64

www.manharaa.com

The length function length : ParList.X.n — Pos is defined by
(Vp : p € ParList.X.n : length.p = n) (3.3)

Remark The constructors for Parlist are defined similarly to how one might
define the function power : Real x Pos — Real, that computes the value of its first
argument raised to the power of its second argument, i.e., power.z.n = ™. We can

define power recursively as follows:

power.xz.l = x (3.4)
power.z.(2xn + 1) = x*xpower.r.(2%n) (3.5)
power.x.(2%n) = (power.z.n)> (3.6)

The choices for inductive cases were rather arbitrary, as we could equally well have

chosen:

power.x.(2xn + 1) = power.x.(2+n) x x (3.7)

power.z.(2¥n) = power.z*.n (3.8)

Note how (3.2) corresponds to (3.6) and (3.8), and (3.1) corresponds to (3.5) and
(3.7). End Remark

3.1.1 Axioms

In the following, we extend the axioms of the PowerList theory [Mis94] to an ax-
iomatization of the ParlList algebra. The five constructors for the Parlist algebra:
(),],>,>and < are all isomorphisms on their respective domains, with the following

laws as consequence, where p, q, u,v € ParList X.n A a,b,c € X A n € Pos:

65

www.manharaa.com

prlg=u<v

a>p =bpng
p<ta=q<b

t € ParList.X.1

t € ParList.X.(2%n)
t € ParList.X.(2xn)
t € ParList. X.(n + 1)

t € ParList. X.(n + 1)

= p=u Ng=v

= a=bAp=g
= a=bAp=g
(Fa:t=/{a))

Fu,vut=ulwv)
Fu,vt=uxv)

(Fa,pt=avp)

L T e

(Fb,q::t=¢q<b)

The following axioms are retained from the PowerList theory:

(p|q) > (ulv)

= (p>au) | (gpav)

(3.11)

A
w
—
w

,\
w
—_
W

(3.16)
(3.17)

(3.18)

(3.19)

(3.20)

The remaining axioms extend the PowerlList algebra to define the full ParList algebra.

Note that is not necessary to parenthesize axioms (3.24) and (3.25) since axiom

(3.23) allows two equally valid bracketings.

a>(b)
(a)<b
a>(pab)
avp | qab
a>p < q<b

a >(b>(pwaq))

= (a>p)abd
= av(plg)eb
= av(gxp)<b

= abpp X b>g

Note the symmetry between <t and | in Axiom (3.20). The roles of > and | can be

interchanged in the PowerList algebra, if we do not provide an operational model for

it. This is not the case when we consider the ParlList algebra. If we interpret >and

66

www.manharaa.com

< as prepending and appending an element to a ParList then the contrast between
(3.24) and (3.25) captures the operational difference between > and |. Note the
symmetry between the constructors used in the axioms; the only “asymmetric”
axiom is (3.26), which does not have a | counterpart.

From the ParlList axioms we can prove the following laws that are useful in

manipulating ParList expressions?

Lemma 10

a>(plq) < (u]v)ab = av(uxip) | (vxg)<bd (3.27)
((p1g)<a)db = p<a > gab (3.28)
ad(p<tq)=(uxiv)ab = avpg=udb A p=w (3.29)

av(p|q)=(u|v)aec (Fb:adsp=u<b A bpg=v<c) (3.30)

Proof of (3.27)
a>(p|q) > (u]v)ab
= { Axiom (3.25) }

av((ufv)>(p|q)ab

(3.20) }

= { Axiom

av((umap) | (v)b
= { Axiom (3.24) }
a>(uxp) | (v<g)ab
Proof of (3.29)
a>(p<iq) = (u<v)ab
= { introduce symmetry on right-hand side with Axiom (3.12) }
c>(av(pr<iq)) =c>(upav)ab

= { Axiom (3.26) and Axiom (3.25) }

®The axiom set above is simpler and more expressive than the one found in [Kor97b, Kor97c]
where (3.24), (3.25) and (3.26) were replaced by (3.27), (3.30) and (3.31).

67

www.manharaa.com

copabg=cboxudb
= { Axioms (3.11) and (3.12) }
p=v A abqg=u<b

Proof of (3.28)
piaxgab=((p=gq)<da)ab
= { introduce symmetry to right-hand side with Axioms (3.12) and (3.23) }
c>(paaxigad) = (cr(p=g)<a)<dd
= { Axiom (3.25) }
c>(paa<igabd) = (cpqg < paa)<b
= { (329 }
c>(gab) = (crpq)ab
= { Axiom (3.23) }
true

End of Proof

The proof of (3.30) can be found in Section 3.1.2 below. From (3.29) and (3.18) we

can derive the following laws, which are useful in proofs of properties of ParLists.

Lemma 11

ar(p<q)=(uxp)ab = adg=udb (3.31)
(Va,p,q = (3byu = av(p=q) =(uxv)db A abqg=uxb)) (3.32)
(Vb,u,v = (Fa,q = av(vxq)=(uxv)db A arqg=u<b)) (3.33)

Proof of (3.32) ((3.33) is similar); (3.31) follows from (3.29) by instantiation.
true
= { Axiom (3.18) }
(Va,q:: (Ab,uavqg=uxb))
= { Lemma 11 (3.31) }
(Va,p,q = (3byuzav(pxgq) = (uxip)db A avqg=u<xb))
68

www.manharaa.com

End of Proof

Scalar Operators

Let ® : X x X — X be a binary operator, defined on the scalar type X. We lift
® to operate on ParList.X, i.e., ® : ParList.X.n x ParListX.n — ParList.X.n in an
“element-wise” fashion, with the following laws

(a) @ (b) = (a®b) (3.34)

(avp)® (brq) = (a®b)>(p®q) (3.35)

(p>q) @ (uaw) (p®u) > (¢g®o) (3.36)

As alternatives to (3.35) and (3.36) we could have chosen (3.37) and (3.38) as they

are interchangeable:

(paa)®(gab) = (p®q)a(a®b) (3.37)
Pla@lv) = (peu) | (go0) (3.38)

The proofs that (3.37) and (3.38) follows from (3.34), (3.35) and (3.36) can be found
in [Kor97c|.

3.1.2 Induction Principle for ParlList

A ParList p with elements from the type X (i.e., p € ParLists.X) can be deconstructed
uniquely into an ordered sequence of its elements; this can be achieved by building a
constructor tree for p. We use constructor trees as the formal basis for the induction
principle for ParLists and in the definition of functions over ParLists. We build the
constructor tree as follows. First, restrict the use of >and < so they only construct
elements in OddParList.X. Pick one of < and |, and one of > and «; without loss
of generality we choose < and > below. Construct a tree from p by labeling the

root with p; for each leaf labeled with an element of ParList.X, say ¢, perform the

following operations:

69

www.manharaa.com

e If g € Singleton.X then by Axiom (3.14) there exists a in X such that ¢ = (a).

Make the leaf node an interior node by creating a child leaf labeled with a.

e If ¢ € EvenParList.X then by Axiom (3.16) there exists similar ParLists v and
v such that ¢ = w < v. Make the leaf node labeled ¢ interior by creating its

two child leaves labeled u and v from left to right.

e If ¢ € OddParList.X then by Axiom (3.16) there exists a Parlist u and an
element a in X such that ¢ = a >u. Make the leaf node labeled ¢ interior by

creating its two child leaves labeled a and u from left to right.

These operations are performed until all the leaves in the tree are labeled by ele-
ments in X. Each operation produces children whose labels have lengths that are
shorter than the label of their parent?®; hence, the tree construction terminates. The
elements of p appear in order in the leaves of the resulting tree. The construction of
the tree is deterministic since the types Singleton.X, EvenParList.X, and OddParList.X
are disjoint, and Axioms (3.11) and (3.12) assert that the choices of u,v and a are
unique. Thus, by picking a pair of constructors the constructor tree for a ParList is
unique.

We use constructor trees as the structure that defines the inductive principle
for ParLists. Let II : ParList.X.n — Bool be a predicate whose truth is to be estab-
lished for all ParLists over X. To establish the property Il.p for a ParList p, build
the constructor tree for p using a constructor pair. If we can prove that II holds
at a node when II holds at each of its non-leaf children, then we can conclude that

IT holds at the root of the tree. These observations are captured in the induction

3Consider the lengths of elements of X as 0.

70

www.manharaa.com

principle for ParLists:

Ve :x e X 1.(z))
(

(
A ((Yp,q,n:p,q € ParListX.on A n€Pos:Il.p A Il.g = II.(p | q))
V(Vp,q,n : p,q € ParListX.n A n€Pos:Ilp A Il.q = I.(p>=gq)))
A
(

(

Vp,x : p € EvenParList X A z € X:Il.p = IL.(z>p))
V(Vp,x : p € EvenParList X A z € X:Il.p = Il.(p<az)))

(Vp,n : p € ParList.X.n A n € Pos : I1.p)

In the induction principle the choice of the constructor pair is captured by the four
disjuncts. A proof that follows the induction principle consists of three parts: a
base case, an even inductive step and an odd inductive step. This is illustrated in

the proof of (3.30)
ar(plq)=(u|v)xe = (Fb:avp=u1b A brqg=v<c)
given below.

Proof of (3.30). Base case:
av>((z) | (y) = ((2) | {d))<c
= { Axiom (3.19) }
av((z) > (y)) = ((2) pa (d))<c
= { Lemma 11 (3.31) }
av(y) = ()ac A (z) = (d)
= { Axioms (3.21) (3.22) and (3.14) }
a=z Ny=c AN z=d
= { Axioms (3.21) (3.22) and (3.14) }
a>(z) = (z)ad A d>{y) = (d)<c

= { one-point rule b:=d }

71

www.manharaa.com

(Fb:rav(z) = (z)ab A be(y) = (d)<c)
0Odd inductive step
a>(dep | gaz) = (ypu |vaz)ace
= { Axiom (3.24) and Axiom (3.23) }
av(do(p] g)az = yo((u | v)az)ac
= { Axiom (3.12) and Axiom (3.13) }
de(plg)=(u|v)xz Na=y N z=c
{ induction (3.30) }
db:dop=udab A brg=v<z) N a=y N x=c
{ predicate calculus and Axioms (3.12) and (3.13) }
db:av(dep) =y>(udh) A (brg)az = (vdz)<e)
{ Axiom (3.23) }

m —~ n— 1

(Fb:av(dep) = (y>u)ab A b>(gax) = (va2)<c)
Even inductive step:
av((peaq) | (upav)) =((reas)| (teaw))ac

) =
= { Axiom (3.20) }

IS

>((p [u)pa(g|v)) = ((r[t)ea(sw))ac
{ (3.29) }

av(glv)=(r|t)ac AN plu=s]|w

{ induction (3.30) }

{ (3.29) }

(Fb:avg=r<b A brv=1tdc AN p=8s N u=w)
(Fb:rav(pg) = (r>=s)ab A br(uxv) = (tx=xw)dc)

End of Proof

72

www.manharaa.com

3.1.3 Functions in Parlist

A function over Parlists is defined by picking a constructor pair and giving three
different defining cases based on the length of the argument ParList: singleton, even
length and odd length. Functions are defined unambiguously this way, since the
constructor tree for a ParList is unique given a constructor pair. Each defining case

is specified using pattern-matching on the argument ParList:

Subtype Allowed
Constructors
Singleton.X ()
EvenParList.X <
OddParList.X > d

We exploit parallelism as much as possible by requiring that > and < only be used
in function definitions for Parlists of odd lengths. When the argument is of even
length, the computation should be expressed using a balanced divide-and-conquer
strategy. Arguments of odd lengths are handled by an alignment step, introduced
by necessity.

As an example of a function definition over ParLists, we define the function

rev : ParList.X.n — ParList.X.n that reverses its argument.

rev.(a) = (a) (3.39)
rev.(p<q) = rev.q < rev.p (3.40)
rev.(a >p) = rev.p<a (3.41)

Note that the choice of > and > as the constructor pair was arbitrary: (3.40) can
be replaced by (3.42), and (3.41) can be replaced by (3.43) defined below without

changing the value of rew.

rev.(p | q) = rev.q| rev.p (3.42)

rev.(p<a) = abrev.p (3.43)

73

www.manharaa.com

In the definition of rev, (3.40) expresses that each recursive case is indepen-
dent and can be evaluated in parallel. The step described by (3.41) corresponds
to a sequential “alignment” step, necessary before a balanced recursive step can
be performed. The “alignment” step does not have to be sequential, depending
on the parallel architecture and the concrete implementation of ParlList, rev can be
evaluated in constant time. This would be the case on a CREW PRAM with the
straightforward implementation of ParList.

A familiar property of rev is that it is its own inverse (an involution):
rev.(rev.p) = p (3.44)

We use the proof of (3.44) as an illustration of applying the inductive principle for

ParLists to a function definition:

Proof of (3.44), base case:
rev.(rev.(a))
= { rev(3.39) }
rev.(a)
= { rev(3.39) }
(a)

Inductive even case:
rev.(rev.(p > q))
= { rev (3.40) }
rev.(rev.q > rev.p)
= { rev (3.40) }
rev.(rev.p) > rev.(rev.q)
= { induction (3.44) twice }

p™yq

Inductive odd case:

74

www.manharaa.com

rev.(rev.(a >(p < q)))

= { rev(3.41) }
rev.(rev.(p <1 q)< a)

= { rev(3.43) }
a>rev.(rev.(p > q))

= { induction (3.44) }
a>(p > q)

End of Proof

The odd inductive case in the proof used (3.43). A longer proof that does not use
(3.43) can be found in [Kor97c|.

3.1.4 Data Movement Functions

In this section we define operators and functions that move elements within a ParList.
The operators — and < are used in defining the odd-even sort in Section 3.3, and
in defining the prefix sum. In Lemma 12 the operators — and < provide a way to
rewrite > expressions into < expressions and vice-versa.

The operator — : X x ParList.X.n — ParList.X.n takes an element and a
ParList, and “pushes” a scalar into the list from the left. The rightmost element

of the list is lost under this operation. The operator — is defined as follows:

a—(b) = (a) (3.45)
a—(pab) = abvp (3.46)
a—(p>=gq) = a—qxp (3.47)

The dual operator <« : ParList.X.n x X — ParList.X.n “pushes” a scalar into the

list from the right and the leftmost element of the list is lost:

(b)¢—a = (a) (3.48)

www.manharaa.com

(bep)<—a = p<a (3.49)
(p=q)a = gq X p+a (3.50)
Next we define the functions first and last that return the first and last

elements, respectively, of a ParList. Their types are first: ParList.X.n — X and

last : ParList.X.n — X; they are defined by:

first.(a) = a (3.51)
first.(abp) = a (3.52)
first.(p | q) = firstp (3.53)

last.(a) = a (3.54)
last.(p<b) = b (3.55)
last.(p | q) = last.q (3.56)

We could equally well have chosen the following definitions for the even case:

first.(p<q) = first.p (3.57)

last.(p <1 q) = last.q (3.58)
Where convenient we use the following abbreviations for first and last:
P = firstp and D = last.p

Using the definitions above we can state the following pairwise dual prop-
erties. We prove (3.59), the proof of (3.60) is dual. The proofs of (3.61) through

(3.64) are not very interesting and are omitted.

Lemma 12

adpp = a—p< D (3.59)

pdaa = D b pia (3.60)

www.manharaa.com

p = P—(pea) (3.61)

p = (a—p)<D (3.62)
a>(b—p) = a—(bpp) (3.63)
(pab)—a = (p+<b)<a (3.64)

Proof of (3.59). Base Case:
a—(z) < last.(z)
= { — (3.45) and last (2.35) }
(a)<ax
= { (3.21) and (3.22) }
a>(z)

Even inductive case:
av(praq) = a—(p>aq) 9 last.(p > q)
= { — (3.47), last (3.56) }
av(pq) = (a—qp) < §
= { Lemma 11 (3.31) }
arg = a—q< q
= { induction (3.59) }
true

0Odd inductive case:
a—(p<b)<last.(p< b)
= { — (347) }
(a>p)<last.(pabd)
= { last (3.56) }
(avp)ab
= { Axiom (3.23) }
a>(p<b)

End of Proof

7

www.manharaa.com

3.1.5 Broadcast Sum

We turn to the definition of the function b_sum : ParList.Y.n — ParList.Y.n, that
returns a list where each element is the sum of all the elements of the argument list (a
broadcast sum). Here Y is a type with the property that (Y, +) is a semigroup (i.e., +
is associative). It is necessary to define the function [a+] : ParList.Y.n — ParList.Y.n,

that returns the ParlList where a has been added to each element of the argument

ParList.
b_sum.(a) = a (3.65)
bsum.(a>p) = (a+¢) > [a+]t, where t = b_sum.p (3.66)
b_sum.(p>q) = te<at, wheret = b_sum.(p+ q) (3.67)
[a+].(b) = (a+b) (3.68

.68)
[a+].(b>p) = (a+b) > [a+].p (3.69)
la+].(p [¢) = lat]lp | [at]q (3.70)
When b_sum is evaluated with an argument of length 2" — 1, n > 1 there are n — 1
deconstructions using > and n — 1 deconstructions using < . Each deconstruction
takes one parallel time step in order to perform the sum. The total number of
parallel steps thus becomes 2xn — 2. In contrast, if the argument is of length 2",
only n parallel steps are needed. Adding a sufficient number of dummy elements
(i.e., identity elements of + if they exist) to a list makes it into a PowerList. Thus,

functions like b_sum can be evaluated in parallel in fewer steps than with the original

list.

3.1.6 Reusing PowerList Proofs in the ParList Algebra

One of the advantages of the ParList algebra is that it is an extension of the PowerList

algebra. Assume that we have proved a property of a function defined in the

78

www.manharaa.com

PowerList algebra. When we extend the definition of the function to a ParList func-
tion by adding an odd defining case, the theorem still holds for those ParLists that
are also PowerLists, i.e., whose length is a power of two. Moreover, inductive proofs
of properties done in the PowerList algebra can be reused in the proof of the same
property for the extended function in the Parlist algebra. Depending on the struc-
ture of the PowerList proof, the only remaining proof obligation may be to prove the
odd inductive step.

Take as an example the function rev defined in the PowerList algebra by (3.39)
and (3.40). A proof of (3.44), (i.e., rev.(rev.p) = p) consisting of the base and even
cases is sufficient to prove the property in the PowerList algebra. When (3.41) is
added to make rev a Parlist function, the odd case is the only missing part of the
proof; the two others can be reused.

In general, the base case can always be reused from the PowerList proof; the
inductive case from the PowerList proof can be reused as part of the proof of the
even case. If there are no assumptions made about the structure or lengths of the
sub-terms in the proof and the proof does not use other equalities, then the entire
even case can be reused. In the even inductive step in the proof of (3.44), the
“shape” of the sub-terms were left unspecified; thus the entire case can be reused.

When the inductive case in the PowerList proof assumes that the sub-terms
are constructed in two levels, e.g., the proof obligation is written as IL.((p > ¢q) |
(u <)), then the even step needs to be completed with a proof of IL.((a>p) | (b>q)).

When a PowerList proof uses other equalities proven in the PowerList algebra
that have not yet been extended to ParList, then these proofs need to be extended
to ParLists as well.

The following is an example of a property that can be proven in the PowerList

algebra:

length.p is even = length.p is a power of 2

79

www.manharaa.com

However, this property is specific to PowerLists. An attempt at an inductive ParList
proof breaks down in the even case, if the sub-terms are of odd length. Note that
the implication is vacuously true in the odd case, so a naive reuse of the PowerList

proof could have dire consequences.

3.1.7 Concatenation

A very useful operation on lists is to append one list onto another, regardless of the

length of the lists. We define the concatenation operator
¢ : ParList.X.n x ParList.X.m — ParList.X.(n + m)

by the following nine equations?®; note that < has a lower binding power than that

of >, |, pand < :

(a) & (b) = (a) b (b) (3.71)
(a) & pab = avpab (3.72)

(a) O (pq) = av(p=q) (3.73)
avp & (b)Y = avpab (3.74)
avp & qgab = av(pOq)ab (3.75)
av(pg) Guxv = av((pdu) = (gOv)) (3.76)
p<q$(a) = (p=g)aa (3.77)
pagQ (uxv)aa = ((pOu) < (¢Ov))<a (3.78)
pagQuxo = (pOu) = (¢Ov) (3.79)

By its nature < is a generalization of |, so it is no surprise that ¢ is defined using > as
the constructor. It does not appear that | can be used as the defining constructor for
. Note the similarity between (3.20) and (3.79); in fact, by remove the equations
above where the arguments to { have different length (i.e., (3.72), (3.73), (3.74),

“There are nine defining cases to account for all combinations of the three cases for each operand.

80

www.manharaa.com

(3.76), (3.77) and (3.78)) we are left with axioms ((3.71), (3.75) and (3.79)) that
define an operator isomorphic to |. Restricting the type of arguments of { to lists of
equal length and only keeping those equations that make sense under this restriction
(i.e., (3.71), (3.75) and (3.79)) we have defined an operator that is isomorphic to |.

Many properties that hold for | hold for <{) as well; however, they are more

tedious to prove since there are 9 defining cases to consider. We list a few properties

of ¢ below:
first.(p&q) = firstp (3.80)
last.(p&q) = lastq (3.81)
a=(pOq) = a=p O Pog (3.82)
(PO g)a = p=d O qea (3.83)
[a+].(pCq) = [at]p & [at]q (3.84)
sum.(p&q) = sum.p O sum.q (3.85)

One important law that holds for | but not for ¢ is (3.38), due to the ambiguity
that arises when deconstructing the arguments using < .

Since) is a generalization of |, one could ask why ¢ was not chosen as one
of the fundamental constructors for ParList. The arguments of | and > are of equal
length, enforcing a balanced construction, which is essential to obtaining efficient
parallel implementations. The Bird-Meertens theory of lists is based on a concate-

nation operator similar to . We discuss this theory in Chapter 5 along with other

related work.

81

www.manharaa.com

3.2 Prefix Sum

In Chapter 2 we saw that the prefix sum computation can be specified by a PowerList

function (ps), as the unique solution to the equation (in u):
u=(0—u)+p (3.86)

In Chapter 2 we derived a solution to (3.86) for the even case. Here we explore the

odd case:

ps.(p<a)
= { introduce g<b = ps.(p<a) }
q<ab
= { defining equation for ps (3.86) }
0—(gq<b) + p<a
= { —(3.46) }
O>g+p<a
= { Lemma 12 (3.59) }
0—q<q +paa
= { Axiom (3.35) }
(0=q+p)<(q + a)
Summarizing:
g<b = (0—>¢+p)a(7+a)
= { Axiom (3.13) }
g=0—=qg+p ANb=0d+a
= { defining equation for ps (3.86), Leibnitz Rule }
q=psp N b=last.(psp)+a
From the above, along with the PowerList definition from Chapter 2, we get the

following definition of Ladner and Fischer’s algorithm:
ps.(a) = (a) (3.87)

82

www.manharaa.com

ps.(p > q) (0—t+p) > t, wheret = ps.(p+q) (3.88)

ps.(p<aa) = psp < (last.(ps.p) + a) (3.89)

Just as in the case of the broadcast sum, a sequential alignment step was introduced

for the odd case.

3.3 0Odd-Even Sort

In this section we revisit the odd-even sort that we derived for PowerLists in Chapter
2. As in the case of the prefix sum discussed in Section 3.2 above, the restriction to
inputs whose lengths are a power of two is unnatural for the odd-even sort. We will
extend the PowerList algorithm presented in Chapter 2 to a ParList algorithm, and
extend the results on sorting from the PowerList Chapter to ParLists. We present
the derivation of the algorithm from its specification and prove that the algorithm
terminates. We only exhibit the top level of the termination proof, and omit the

extensions of the PowerList results needed to complete the proof.

3.3.1 Sorting

We start by extending relational operators to ParLists. Let A be a relation defined
on the data type X, i.e., A: X x X — Bool and let p,q,u,v € ParList.X.n, and

xz,y € X; we define:

() A(y) = zhy (3.90)
(p<qg) A (ux=v) = (pAu) A (gAv) (3.91)
(avp) A (b>q) = (alb) AN (p A q) (3.92)

As in the case of PowerLists, the laws for the other constructors are a consequence

of this definition:

pla) D ulv) = (pAu) A (¢gAw) (3.93)

83

www.manharaa.com

(paa) A (g<b) = (pAgq) N (aADb) (3.94)
We extend the definition of ascending given in Chapter 2 to OddParList.M by

ascending.(a>p) = a—p <p (3.95)

ascending.(q<ab) = q < q+b (3.96)

As is most often the case, only one of the above equations is needed, since one can
be proven from the other. It is worth noting that (3.95) and (3.96) do not use T
and —.

We recall the following identities of the 1-] calculus of Chapter 2:

(ulv)fr=u = wlv=u A utr=u (3.97)
(utv)lr=u = utv=u A ulr=u (3.98)
utotr=u = utv=u A utr=u (3.99)
wlvlr=u = ulv=u A ulr=u (3.100)

We prove (3.97) by reusing the proof of (2.119) in Chapter 2 for the base case and
the even case. Since the even case did not make any assumptions about the lengths
of sub-terms in the inductive step, the only remaining proof obligation is the odd

inductive case.

Proof of (3.97). Odd inductive case:
((a>p)l(brq)) T (cpv) =a>p
= { | over>(3.35) }
(alb > plg)t(crv) =avp
= { 1 over>(3.35) }
(alb)te > (plg)tv=avp
= { Axiom (3.13) }
(alb)te=a A (plg)tv=p

84

www.manharaa.com

= { inductive and base case }

alb=a A atc=a A plg=p A ptv=p
= { Axiom (3.12) }

albv>plg=avp N atc >pltv=avp

= { 1 | over>(3.35) }

(aep)l(brg) =a>p A (abp)t(cbv) =abp

End of Proof

We start our derivation of odd-even sort in ParLists by exploring the first definition

(3.95) of ascending:

ascending.(a>(p = q))

= { ascending (3.95) }

a—(ppag) < prg

= { — (346) }

a—qg<p<pxgq

= (<39

a—=q<p N p=<q

= { monotonicity of < }

a—=q<p A p<q A (a—=q)d < p—4q

= { Lemma 12 (3.62) }

a=q<p A p<q A q<ped

= { transitivity of <, twice }

aq<p Ap<q A qSped Ap<ped A asg<gq
= { first is monotonic, so a—q¢<p = a < p }
a—=q<p Ap<q A q<ped Ap<pcq§ Aasg<qAa<Dh
= { 1 | calculus (2.100) and (2.101) }

p=a—qtp A p=plg A g=ptq A g=p+dlg

85

www.manharaa.com

A p=p¢p<—a AN g=a—=qtqg A azaiﬁ

= { reorder terms }
a=alP Np=a—=qtp Ap=plqg A p=plp-d

ANg=p=dlg A g=a—=qltq A q=plqg
= { (3.100) with u,v,r := p,q,p4q and (3.99) with u,v,r := q,a—q,p }
a=alP AN p=a—=qtp A p=plalp=d N q=p<=dlqg A g=qla=qtp
= { (3.97) u,v,r :=p, a—q,plqlp—ad; (3.98) u,v,r := q,p—4q,qTa—qTp }
a=alP A p=(a=qtp)lplalp=a N q=(p=dlg)Tqta—qtp
= { Axiom (3.11) and Axiom (3.12) }

av(peq) = (alP)>((a—=qtp)lplalpa = (p<dlqg)Tgta—qtp) (3.101)

In Chapter 2 we defined the odd-even sort oddeven for PowerLists by:

even.(p><q) = plq = ptyq (3.102)
even(z) = (z) (3.103)
odd.(u<v) = ——vtu X vlueT (3.104)
odd.(z) = () (3.105)
oddeven.p = odd.(even.p) (3.106)

We will use the above as the definition of oddeven for the Singleton and EvenParList

cases, and continue by exploring (3.101) for a definition for the OddParList.M case:

ald > ((a=qtp)dplalped = (p=dlq)Tqta—qtp)

— { property of -, =: (a—q)q =q }

alD > ((a=qtp)lpl(a—q)«qlp+7q = (pq) (a—q)+d)tqta—qtp)
= { —over 1 and | }

alP > ((a=qtp)iplla—=qlp)d < (pla—g)=dtqta—qtp)
= { even (3.102) for EvenParList }

alP v even.(a—qtp = pl(a—qlp)1)
= { first distributes over |; <(3.50) }

86

www.manharaa.com

first.(a—qlp) > even.(a—qTp = pJ,(a—>qJ,p)<—Zj)
= { define odd for OddParList.M by (3.108) }

odd.((a—qlp > a—qTp)<q)

= { even (3.102) }

odd.(even.(a—q =< p)< Q)

= { — (347 }

odd.(even.(a—(p <))<)

= { define even for OddParList.M by (3.107) }
odd.(even.(a>(p > q)))

= { define oddeven for OddParList.M by (3.109) }
oddeven.(a>(p = q))

We have derived the following definition of the odd-even sort for OddParList.M:

even.(a>q) = even.(a—q)< q (3.107)
odd.(pab) = D>even.(peb) (3.108)
oddeven.(a>p) = odd.(even.(a>p)) (3.109)

Note that we use the PowerList function even in the above derivation and definition.
Since even is defined without the use of T and —, the above definition does not
depend on their existence. It is also worth noting the duality between (3.107) and
(3.108); had we started with (3.96) as a definition of ascending, we would have

derived an algorithm where the roles of odd and even were reversed:
oddeven'.(q<a b) = even.(odd.(q< b)) (3.110)

We proceed by proving that iterating oddeven converges towards a (sorted) fixpoint.

The lexical ordering (<) used for PowerLists is extended to ParLists as follows:

adu<brv = a<bV (a=b A u=<wv) (3.111)
uda <vdb = u<vV (u=v A a<b) (3.112)
87

www.manharaa.com

The convergence property follows from
even.p <p = —(even.p=p) (3.113)
We start by proving the odd inductive case:
even.(avq) <avq = —(even.(a>q) = a>q) (3.114)

Proof of (3.114)
even.(a>q) < a>q
= { even (3.107) }
even.(a—q)<d q < avq
= { Lemma 12 (3.59) }
even.(a—q)<4 § < a—q<a g

= { <(3.112) }

even.(a—q) < a—q V (even.(a—q) = a—q A § < q)

= { induction (3.114), see (3.113) below }

—

—(even.(a—q) = a—q) V (even.(a—q) =a—q A 4 < q)

= { predicate calculus }
—(even.(a—q) =a—q A ¢ = Q)

= { Axiom (3.12) }

—(even.(a—q)<1 § = a—q< q)

= { even (3.107); Lemma 12 (3.59) }

—(even.(a>q) = a>q)

End of Proof
To reuse the proof of (3.113) from Section 2.7.2, we need to establish
even.(a>p | gab) <avp|qgab = —(even.(avp|q<ab)=avp|qgad) (3.115)

This proof is omitted, since it follows closely the proof given in Chapter 2.

88

www.manharaa.com

The proof of the dual result
odd.(p<ab) < pab = =(odd.(pab) =p<b) (3.116)

is similar to the above proof and is omitted.

3.4 Adder Circuits

In [Ada94] Will Adams presented PowerList descriptions for two arithmetic circuits
that perform addition on natural numbers: the ripple carry adder and the carry
lookahead adder. The ripple carry adder performs addition as it is first taught in
grade school; it is an inheritly sequential method, yielding a running time that is
linear in the number of bits to be added. The carry lookahead adder uses a prefix
sum calculation to propagate carries, yielding a method that is logarithmic in the
number of bits to be added in a setting where sufficient parallelism is available.

Adams proved that the ripple carry circuit correctly implements addition,
and that the carry lookahead and the ripple carry circuits implement the same
function. This result was established in the PowerList algebra. Since the PowerList
algebra only contains lists whose length are a power of two, and there are no a priori
restrictions on the length of either addition circuit, these circuits should be specified
as ParList functions.

In the following we extend the definition of the addition circuits and the

equivalence result to the ParList algebra. We start by defining the data types

Bit = {0,1}

Trit = {0,1,7}

where 0 and 1 are the binary digits, and 7 corresponds to a “propagate” action for

the carry-in value to a position, in the carry lookahead adder.

89

www.manharaa.com

The ripple carry adder takes three arguments:
rc : Bit x ParList.Bit.n x ParList.Bit.n — ParList.Bit.n x Bit

The first argument is the carry-in bit and the second and third arguments are the
two ParLists of bits that are to be added. The result is a pair; the first component of
the pair is a ParList containing the result of the addition, and the second component
is the carry-out bit from the addition. The following equations defines rc, where

(3.117) and (3.118) are taken from [Ada94]:

re.b(z).(y) = (((x+y+0b) mod2),(x+y+b)+2) (3.117)
re.b.(p| q).(r|s) = (t,d) (3.118)
where t = ulwv
(u,¢) = rebpr
(v,d) = rceq.s
(3.119)
re.c.(p<a).(¢qgab) = (u<y,x) (3.120)
where r = (a+b+d)+2
y = (a+b+d)mod?2
(u,d) = reepyq

The carry lookahead adder has the following type
cl: Trit x ParList. Trit.n x ParList. Trit.n — ParList. Trit.n x Trit

To specify the carry lookahead adder, Adams introduced the associative scalar op-

erators e, x and ® defined by:

_ . _ x frx=y

o : Trit x Trit — Trit rey = (3.121)
m ifx#y
if ™

* ¢ Trit x Trit — Trit THyY = Y u# (3.122)

z fy=mn

90

www.manharaa.com

x ify#w

® : Trit x Trit — Trit TOY =
-y ify=mw
-0 =1
Where -1 = 0
-T = 7
Adams [Ada94] defined the carry lookahead adder by
cbp.gq = (t,d)
where t = sOr
d = $x7
r = pegq
s = ps.(b—r)

(3.123)

(3.124)

and ps is computed using the associative operator x (that has 7 as its neutral

element). He proceeded by deriving the following recursive description of ¢l for the

even case:

cb.(plq).(u|v) = (td)
where t = rls
(rya) = clbpu
(s,¢) = cla.quw

By expanding the odd case of the definition of ¢l we get:

ce.(paz).(¢gay) = (a,w)
where w = u®v
a = u*xd
v = (paz)e(qay)
u = ps.(b—v)

Comparing this with the quantities defined by cl.b.p.q (3.124), we get

91

(3.125)

(3.126)

www.manharaa.com

u

= { (3.126) }
ps.(b—v)

= { above }
ps.(h—(ra (z o))

= { — (3.46) }
ps.(br)

= { Lemma 12 (3.60) }
ps.((b—r)aT)

— { ps(389) }
ps.(b—r)< (last.(ps.(b—r)) x T)
= { (3.124) }

= { above }
(sa(3x7)) O (ra(zey))
= { Axiom (3.37) }
(s©r)a(($x7) o (zey))
= { (3124) }
ta(d© (zey))
In summary, we have
cle(pax).(qgay) = (t<9(dO (vey)),dx(zey)) (3.127)

where c¢l.b.p.q = (t,d)
We can now prove the missing case in the proof of the equivalence of the ripple carry

92

www.manharaa.com

and carry lookahead adders.

Proof

re.c.(p<a).(qgab) = cl.c.(p<aa).(qgab)

= { rc(3.120) and ¢l (3.127) }
(sa((a+b+d) mod?2),(a+b+d)+2) = (ta(e® (zoy)), ex(zey))

A (s,d) =reep.q A (te) = clep.g
= { by induction (s,d) = (+,e) [Ada94] }
(s<((a+b+d)mod2),(a+b+d)+2)=(sa(d® (roy)),dx(rey))
= { equality on pairs }

(a+b+d)+2=dx(xey) A s<a((a+b+d) mod2)=sda(d® (zey))
= { Axiom (3.13) }
(a+b+d) =2=dx(zey) N s=s A (a+b+d) mod2=d® (zey)
= { (3.128) and (3.129) see below }

true

End of Proof
In the last hint we used the following identities established in [Ada94]:

d*(zey) = (r+y+d) +2 (3.128)
do(zey) = (z+y+d) mod?2 (3.129)

Note that in the inductive step we need to establish that the lemmas that were used
in proving the equivalence [Ada94] generalize to ParLists. These proofs are omitted
in this presentation, since they add little insight into the problem or the ParList

theory.

3.5 Summary

The ParList notation is an appropriate generalization of the PowerList notation. For

certain PowerList functions, such as the prefix sum, it is unnatural to require that

93

www.manharaa.com

the length of its input is a power of two. With ParLists it is possible to express
parallel computations over inputs of arbitrary lengths. For some ParlList functions
this approach has the drawback that for each odd length encountered during decon-
struction of the argument, a sequential alignment step is introduced.

The ParList theory is an extension of the PowerList theory, obtained by adding
the constructors > and < from linear list theory. The ParList theory is more compli-
cated; it has 18 axioms in comparison with the 7 axioms in the PowerList theory.
However, the additional axioms are simple and have reasonable interpretations in
standard models of linear lists. The induction principle for ParLists is simple; it
closely follows the way that functions are defined over ParLists.

Many of the PowerList functions that we studied in Chapter 2 have simple
extensions in the ParList notation; this was done by providing the inductive case for
ParLists of odd length. We derived the odd cases for Ladner and Fischer’s prefix
sum algorithm and the odd-even sort, and extended Adams’ definitions of the ripple
carry and the carry lookahead addition circuits to ParLists.

The set of shared axioms makes it possible to reuse proofs of properties of
the corresponding PowerList functions when proving the same properties of ParList
functions. Combining this observation with the induction principle for ParLists we

presented a strategy for reusing PowerList proofs in the ParlList theory.

94

www.manharaa.com

Chapter 4

Plists

In this chapter we generalize the Powerlist data structure to PLists. PLists are
constructed with the n-way < and | operators; e.g., for positive n the n-way | takes
n similar PLists and returns their concatenation. While the PowerList notation is
intimately tied to radix 2, the PList notation enables us to state properties and
algorithms in the radix that is most suited for the problem. The PList notation is
even more general; it allows the use of mixed radices in specifications, and facilitates
algebraic reasoning about such specifications.

We illustrate the PList notation by specifying three generalized connection
networks and proving that these network are isomorphic. This work is joint work

with my advisor Jayadev Misra [MK97].

Note on Notation

We use square brackets to denote ordered quantification in the PList algebra. The
expression [: ¢ € T : p.i] is a closed form for the application of the n-ary operator
>t applied to the PLists p.i in order. The range ¢ € m means that the terms of
the expression are written from 0 through n—1 in their numeric order. We assume

that these ranges are non-empty. The same convention applies to the expression

95

www.manharaa.com

[[i:1€m:p.i]; it will also be used for other non-commutative operators, such as

string concatenation.

4.1 PList - An Extension of the PowerlList Algebra

A PList is a non-empty linear data structure, whose elements are all of the same
type, either scalars from the same base type, or (recursively) PLists that enjoy the

same property. We define the length of a PList by length : PList.X.n — Pos:
(Vp : p € PList.X.n : length.p = n) (4.1)

Two Plists are similar if they have the same length and their elements are similar;
two scalars are similar when they belong to the same base type. The simplest PList
is called a singleton and consists of a single element; the singleton containing z is
written as (z). Let p.i, where 0 < ¢ < n and n € Pos, be n pairwise similar PLists,

each of length m. Define the PList u as
u=I[li:i€mn:p.i

u is obtained by concatenating the contents of the lists p.i in order, i.e., the jth

element of p.i appears as element 7 * m 4 7 of u. Similarly, the PList v defined by
v=[xi:i€n:p.i

contains the interleaving of the contents of the lists p.7 in order, i.e., the jth element
of p.i appears as element 7 + j *x m of v.

Formally, the constructors have the following types:

(_):X — PList.X.1
[[i:i€em:_]: (PList.X.m)" — PList.X.(n x m)

[<i:iem: _]: (PList.X.m)” — PList.X.(n * m)

96

www.manharaa.com

PList Axioms

For 0 <i<nand 0 < j <m (where n,m € Pos) let p.i.j € PList.X.k, i.e., p ranges
over n * m similar Plists; let u.i,v.1 € PList.X.k, and let z.7,a,b € X. The following

axioms define the PList algebra:

(V¢:t€PListX.1: (3a:t=(a))) (4.2)

(Vt:t € PListX.(kxn): (Qu:t=[xi:i€m:ui)) (4.3)

(Vt:t € PListX.(k*n): (Ju=t=1[i:i€mn: ui])) (4.4)

(a)=(b) = a=b (4.5)
[<iciemiuil=[<itien:vi = (Vi:0<i<n:ui=u.i) (4.6)
litiemiui=[itien:vi = (Vi:0<i<n:ui=uvi) (4.7)
<ici€m: (wi)] = [liti€m: (2.4)] (4.8)
<i:ien:[|j:jem:pij]] = [[j:jem:[=xi:ien:pij]] (4.9)

Let the n-ary operator [17: 4 € m: _] : X" — X and the unary operator ~: X — X
be defined on the scalars of p.i.j and z.i. We lift these operators to PLists in the

following way:

~(a) = (~a) (4.10)

~livieniuil = [lii€n:~u.i (4.11)
~[iiEemud] = [icien: ~ud] (4.12)

bizien: (zi)] = (i:iemn:ad]) (4.13)
bizienm:(j:jem:pij)] = [j:jem:[tizien:pij)] (414)
i:iem:(jjem:pij]] = [Nj:jem:[ki:ien:pij]] (4.15)

Note that only one of (4.11) and (4.12) and one of (4.14) and (4.15) are needed; for

each pair one equation follows from the other.

97

www.manharaa.com

Let permute be a permutation function on PLists. For n (n € Pos) similar

PLists g.: where 0 <7 < n we have:

permute.(~p) = ~ permute.p (4.16)

permute.[ti:i €M qd] = [ti:i €M : permute.(q.1)] (4.17)

4.1.1 Scalar Data Structures

We use linear lists to describe the arities that apply in definitions of functions over
PLists. In this section we define linear lists, as well as strings and sets; these data

structures are used in defining the connection networks of Section 4.3.

Linear Lists

We use the type function
List : Type — Type

to construct the type of linear lists over a data type. The empty list is denoted by
[]. For an element x € X and a list [€ List.X we write z >/ for the list that has x as
its head and [as its tail, and we write [<x for the list that has z as its last element
and [as its beginning!. When convenient, we use the notation [z] for the list that
contains the single element z.

Since we will primarily use linear lists over positive natural numbers, we
introduce the name PosList as an abbreviation for List.Pos. We define the function
prod that computes the product of the elements of a linear list in Poslist, i.e.,

prod : PosList — Pos:

prod.]] = 1 (4.18)

prod.(x>l) = xxprod.l (4.19)

!We have overloaded the operators >and < from the ParList notation. This is intentional, since
the ParList theory can be viewed as a unification of the PowerList and linear list theories.

98

www.manharaa.com

We also define the function linrev : List. X — List.X that reverses a linear list:

linrev.[] = [] (4.20)

linrev.(x >l) = linrev.l<x (4.21)

Strings

We use strings to label the nodes of the connection networks in Section 4.3. The type
of strings from an unspecified alphabet is called String. We write the concatenation
of the n strings s.i, for 0 < i < n, by [+-i:7 € R : s.i], using the generalized
notation described above. In the special case of n = 2 we use the infix version
of the operator, i.e., s++1 is the concatenation of the strings s and ¢; we have
[++i:i€m:_]:String” — String .

If s is a string and i is a natural number, then soi (read s “tag” i) is the
string obtained by concatenating s with a string representation of the number 7. We
have _o_: String x Nat — String. We recall that ¢ has a higher binding power than

+- .

Sets

The elements of a PList can be regarded as a set; this is useful when we prove isomor-
phisms between network topologies. We use the type Set.X to denote the type of sets

whose elements are in X. We define the “setify” operator {_} : PList.X.n — Set.X

as follows:

(@)} = {=«} (4.22)
{[<i:ien:uil} = (Ui:0<i<n:{ui}) (4.23)

{[li:ien:ui} = (Ui:0<i<n:{ui}) (4.24)

99

www.manharaa.com

Note that only one of (4.23) and (4.24) is needed, as one can be proven from the

other. Letting permute be a permutation function on PLists, we have

{permutep} ={p} (4.25)

4.2 Functions over Plists

Functions over PLists are defined using two arguments. The first argument is a list
of arities, and the second is the argument PList. Functions over PLists are only
defined for certain pairs of these input values; to express the valid pairs we require

that the specification of the function defines the predicate
defined : ((List x PList) — X) x List x PList — Bool

to characterize where the function is defined. We only write properties of func-
tions where they are defined and it becomes a proof obligation to ensure that the
introduced terms are well defined.

We illustrate this convention by defining the function sum, which computes

the sum of all elements of a PList over a type where + is defined:

defined.sum.l.p = prod.l = length.p (4.26)

sum.[].(a) = a (4.27)

sum.(z>l).[]i 1 € T : p.i] (+i:0<i<z:suml.(p.i)) (4.28)

An example of applying sum is:

sum.[5).[|i i €5 : (i)]

= { sum (4.28) }
(+i:0<i<5:sum.[].(s))
= { sum (4.27) }
(+i:0<i<5:0)

100

www.manharaa.com

= { arithmetic }

0+1+2+3+4

= { arithmetic }

10
Note that if we instantiate sum with a PowerlList p and a linear list consisting of
loglen.p 2’s, we have a function that is the same as the function sum defined for
PowerList in Chapter 2. This observation will hold for most PList functions, although
the predicate defined can in principle be written in such a way that the function
is undefined for some or all PowerLists. All of the PList functions defined in this

chapter can be specialized to PowerList functions.

4.2.1 An Induction Principle for PLists

Functions over PLists are defined by structural induction over two structures, PosList
and PList, where the valid pairs are determined by defined. We can define two
equally valid induction principles for PLists, one based on each of these structures.

We present the inductive principle over PosList below. Let
IT : PosList x PList.X.n — Bool

be a predicate whose truth is to be established for all pairs of PoslList and PLists

over X where the function applications are defined. We define the predicate

valid : (PosList x PList.X.n — Bool) x PosList x PList.X.n — Bool

101

www.manharaa.com

to characterize these pairs. We can establish the predicate II by the following

induction principle:

(Vp: p € PList.X.n A walid.IL] |.p: IL.[|.p)
A((Yp,q,l:pePListX.n A q€ PList.X.mm A [€ PosList :
(validI1.l.p = ILlp) = (validIl.(zvl).q = I.(z>l).q))
V (Vp,q,l: p € PList.X.n A ¢ € PList.X.om A [€ PosList :
(validIL.l.p = Ilil.p) = (validIl.(l<z).q = Il.(l<z).q)))

= (Vp,l:p € PList.X.n A [€ PosList : validI1.l.p = Tl.1I.p)

We do not give explicit formulations of walid in proofs of properties, but we
do state relevant consequences of valid. All formulas we write in proofs satisfy valid,

given the assumptions made in the context.

4.2.2 Permutation Functions in PLlists

We continue by defining four permutation functions over PLists. We will only use
one of them (inv) in our treatment of the permutation networks. The others are
included since they illustrate how PLists can be used to reason algebraically about
mixed-radix representations.

The permutation function inv : PosList x PList. X.n — PList. X.n generalizes
the PowerList function inwv to PLists. Operationally, #nv maps an element of a PList
whose position can be written as a string of digits in a mixed-radix notation to a

position that can be written as the reverse of the string.

defined.inv.l.p = prod.l = length.p (4.29)

inv]].(a) = (a) (4.30)

inv.(xpl)[|i:i €T pi| = [xi:i€T:invl.(p.i)] (4.31)
102

www.manharaa.com

Two interesting properties of inv are:

inv.(l<x). i i €T pad] = [li:i €T :invl.(p.i)] (4.32)

inv.l.(inv.(linrev.l).p) = p (4.33)

Proof of (4.32), base case
inv.Jz].[<i i €T : (aui)]
= { Axiom (4.8) }
inv.[z].[]i i €T (a.3)]
= { inv (4.31) }
i i €7 :anv |.(a.q)]
= { inv (4.30) }
i €T : (a.)]
= { Axiom (4.8) }
[|i:i€T: (ai)]
= { inv (4.30) }
[|i:7€T:inv]].(a.i)]

Inductive step:
inv.((ypl)dx).[<i:i€T:[|j:j €7y pij]]
= { Axiom (4.9) }
inv.((yvl)ax).[|j:j€Y: [Ni:ie€T: pij]]
= { inv(4.31) }
[<j:j €Y :inv(l<ax).[<i: i €T:pij]
= { induction hypothesis (4.32) }
<j:jeg:[li:iem:invl.(p.i.j)]]
= { Axiom (4.9) }
li:i€T:[xj:j €Ty :invl.(p.i.j)]]
= { inv(4.31) }
[li:i€T:imv(yl).[=yg:jET:p.ij]

103

www.manharaa.com

End of Proof

Proof of (4.33), base case omitted. Inductive step:

inv.(x >1).(inv.(linrev.(x >1)).[<1i 1 i € T : p.i))
= { linrev (4.21) }

inv.(x >1).(inv.(linrev.l< x).[<0 10 €T 2 p.i))

= { result above (4.32) }

inv.(x>l).[|i: i €T inv.(linrev.l).(p.i)]

= { inv (4.31) }

[i €T :invd.(inv.(linrev.l).(p.i))]

= { induction (4.33) }

(i i €7 : pod]

End of Proof

Note that we omitted any reference to the definedness of expressions in the proof
above, since this property is simple to check. In Section 4.3.4 we will see proofs
where these proof obligations are non-trivial, and hence are not omitted.

Next, we define the function rev: PList.X.n — PList.X.n that reverses the

order of the elements of a PList:

defined.rev.l.p = prod.l = length.p (4.34)
rev.[|.(a) = (a) (4.35)
rev.(yl).[|i i €7 : p.i] = [li:i€eg:revl.(p.(y—(i+1)))] (4.36)

As in the case of PowerList; (4.36) can be replaced by:
rev.(y >l).[<i:i €G:pi] =[xi:i€g:revl.(p.(y—(i+1)))] (4.37)
There is an interesting relationship between rev and inw:

rev.l.(inv.(linrev.l).p) = inv.(linrev.l).(rev.l.p) (4.38)

104

www.manharaa.com

Proof By induction over the length of [. Base case:

rev.| |.(inv.(linrev.]).(a)) = inv.(linrev.[]).(rev.[].(a))
= { linrev (4.20) }

rev.] |.(inv.[].{a)) = inv.[].(rev.]].(a))

= { inv (4.30); rev (4.35) }

rev.] |.(a) = inv.[].(a)

= { rev (4.35); inv (4.30) }

(@) = {a)

Inductive step:

rev.(y >1).(inv.(linrev.(y >1).[<i 1 1 € § : p.il))

= { linrev (4.21) }

rev.(y >1).(inv.(linrev.l< y).[<i i € § : p.i])

= {inv(4.32) }

rev.(yl).[|i : i € § :inv.(linrev.l).(p.7)]

= { rev (4.36) }

[|i:1€7: revl.(inv.(linrev.l).(p.(y—(i+1))))]
= { induction (4.38) }
[|i:9€y:inv.(linrev.l).(rev.l.(p.(y—(i4+1))))]
= {inv(4.32) }

inv.(linrev.l<y).[<i i € : (revd.(p.(y—(i+1))))]
= { rev (4.37) }

inv.(linrev.l< y).rev.(y >1).[><i 1 i € § = p.i]
= { linrev (4.21) }

inv.(linrev.(y »1)).rev.(y >1).[<0 14 €7 : p.i]

End of Proof

Next, we define two permutation functions that are inverses of one another:

rir and ril. These functions are are similar to inv since they permute the elements

105

www.manharaa.com

of a PList according to their mixed-radix representation as specified by the given

list of arities. The function rir: PosList x PList.X.n — PList. X.n is defined by:

defined.rir.l.p = prod.l = length.p (4.39)
rir.]].(a) = (a) (4.40)
rir.(lay).xi i €7 1 pli] = [|i:i€7:p.i] (4.41)

Operationally, rr.l.p permutes an element of p whose position can be written in a
mix-radix representation where the radices are specified by [, to a position that is
obtained by rotating the representation one position to the right. The inverse to rir

is 7l : PList. X.n — PList. X.n, which is specified by:

defined.ril.l.p = prod.l = length.p (4.42)
ril.[].(a) = (a) (4.43)
ril.(y>l).|i:i €7 p.] = (<4 €7 p.i (4.44)

Operationally, ril is similar to rir except that it rotates the representation to the
left.

The fact that il and rir are inverses is simple to prove:

ril.l.(rir.(linrev.l).p) = p (4.45)

Proof Over the structure of [. Case []
ril.[.(rir.(linrev.]]).(a))
= { linrev (4.20) }
ril.]].(rir.[].(a))
= { rir (4.40) }
ril.]].(a)
= {rl(443) }

106

www.manharaa.com

Case y i :
ril.(y »1).(rir.(linrev.(y »1).[<i 14 € G plil))
= { linrev (4.21) }
ril.(y >1).(rir.(linrev.l < y).[<i 11 €5 : p.i])
= { rir(441) }
ril.(y>l).[|i:i €7 p.]
= { ril (4.44) }
(<4 €7 p.i

End of Proof

It is possible to generalize the PowerList functions 77 and 7/ and the PowerList opera-
tors — and < to PLists. We omit their definitions since they require manipulations

of the indices of the generalized notations.

4.3 Interconnection Networks

In this section we describe four interconnection networks. These networks can be
configured to realize the routing from input nodes to output nodes specified by any
permutation. First, we describe binary networks where the nodes are 2 x 2 switches
(i.e., they have arity 2) as PowerlList functions, and prove that the four networks
are isomorphic. The PowerList functions are then generalized to PList functions
describing generalized networks, where the nodes in each column have the same,
positive arity, but nodes in different columns may have different arities. Based on
these specifications we prove that the generalized networks are isomorphic, by lifting

the PowerList proofs to corresponding PList proofs.

107

www.manharaa.com

4.3.1 Binary Interconnection Networks

An interconnection network of size 2", where n € Pos, has n + 1 stages numbered
0 through n (the stages will appear in increasing order from left to right in the
figures). Each stage has 2" nodes; nodes in stage 0 are initial nodes and those in
stage n are final nodes. Each non-initial node has two input ports, known as top
and bottorn. Each non-final node has two output ports known as top and bottom. A
node has the property that the values on the input ports either pass through to the
same output ports, or they are exchanged?. This node behavior can be controlled
by an external routing protocol. The output ports of nodes in stage 7 are connected
to the input ports of nodes in stage i + 1, 0 < i < n. Examples of interconnection
networks are the butterfly, iterative and recursive networks®. Each of these, e.g.,
the butterfly network, actually denotes a family of networks where each member of
the family has a number of input ports equal to a different value of 2".

We describe the structure of a family of networks by a PowerList function.
These functional descriptions can be used to prove that the different network families

are isomorphic.

Examples of Networks

First, we consider an interconnection network that we call the iterative network
because the connections are identical from stage to stage. The network for 2" =4
is shown in Figure 4.1. In stage 1, the top lines of the stage come in order from the
upper half of the previous stage and all the bottom lines come from the lower half in
order. The connections for the remaining stages are the same as in the first stage.
Next, we consider a recursive network, an interconnection network created

in a recursive fashion. For 2" = 1, the network is a single node. For 2" = 2, the

2A node with this property is often called a switch in the literature.
#We use the names iterative and recursive, since there does not seem to be a consistent usage
of the names Benes, Clos, Waxman, Omega and Baseline for these networks in the literature.

108

www.manharaa.com

Figure 4.1: An Iteratively Constructed Interconnection Network, 2" = 4

<

Figure 4.2: The Recursive Network for 2" = 2

network is a butterfly network with 2 stages, as shown in Figure 4.2. We show the
general construction scheme in Figure 4.3, for 2" = 4. In stage 1, all the lines in
the top half are the top output lines of the previous stage and all the lines in the
bottom half come from the bottom lines in the previous stage, in order. Next, two
copies of the same network of the next smaller size, for 2" = 2, are appended to the
upper and lower halves.

A butterfly network of size n, where 2" = 2 is shown in Figure 4.2, the
butterfly network of size 2" = 4 is shown in Figure 4.4 and the butterfly network of
size 2" = 8 is shown in Figure 4.5. The interconnection structure can be described
as follows. The initial nodes in the upper half have their top lines connected to the

top lines in the upper half of the next stage and their bottom lines connected to

109

www.manharaa.com

Figure 4.3: The Recursive Network, 2" =4

the top lines of the bottom half of the next stage, in order. The connections for the
bottom half of the initial nodes are analogous.

The mirror image of the butterfly network for 2" = 8 is shown in Figure 4.6.

4.3.2 Describing the Binary Networks in PowerlList

We adopt the following scheme to describe the structure of a network. Name each
node in stage 0 by a distinct character from some alphabet. For a node named b,
name its top outgoing edge bo0 and its bottom outgoing edge bol. A node whose
top (respectively, bottom) incoming edge is named b (respectively, ¢), is assigned
b++ ¢ as its name. Thus, in Figure 4.7, given that the nodes in stage 0 are named
a, b, c,d from top to bottom, the other nodes are named as shown. It is clear that
given the PowerlList of names for the nodes in stage 0, all the node and edge names
are determined. Further, given the Powerlist of node names at the last stage, it
is possible to reconstruct the names assigned to all the nodes and edges and their
interconnections.

We describe the structure of a network by a function whose argument is a

110

www.manharaa.com

e

Figure 4.4: Butterfly Network for 2" =4

Figure 4.5: Butterfly Network for 2" = 8

111

ol Lalu ZJI—EL'

Figure 4.6: Mirror Image of the Butterfly Network

PowerList of names, to be assigned in sequence to the nodes in stage 0, and whose
result is a PowerList of the names assigned to the nodes in the last stage of the
network. The networks are described by the functions, iter, rec, but and tub, with

the following types:

ster : Nat x PowerList.String.n — PowerList.String.n
rec : PowerList.String.n — PowerList.String.n
but : PowerList.String.n — PowerList.String.n

tub : PowerList.String.n — PowerList.String.n

Note that the iterative nature of iter is described by its first argument, which denotes
the number of stages in the network. The term iter.(loglen.p).p describes the labels
in the last stage of the iterative network, with p describing the labels in stage 0.

The functions are defined as follows:

112

www.manharaa.com

a a0c0 a0c00b0d00

b alcl a0c01b0d01
c b0dO alc10bl1d10
d b1d1 alcllbidil

Figure 4.7: Naming the Nodes in a Network

Iterative Network

iter.0.p = p (4.46)
iter.(k +1).(p|q) = iterk.(po0++ go0 > pol + gol) (4.47)

Recursive Network
rec.(a) = (a) (4.48)
rec.(p<q) = rec.(po0+qo0) | rec.(pol + gol) (4.49)

Butterfly Network
but.{a) = (a) (4.50)
but.(p | q) = but.(po0+qo0) | but.(pol -+ gol) (4.51)

Mirror Butterfly Network
tub.(a) = (a) (4.52)

tub.(p<q) = tub.(po0++go0) > tub.(pol + gol) (4.53)

113

www.manharaa.com

The PowerlList representation is useful when we wish to concatenate differ-
ent networks; functional composition corresponds to network concatenation. The

labeling in Figure 4.7 is obtained by

iter2.(a b ¢ d)

= { iter (4.47) }

iter.1.(a0c0 alcl b0dO bldl)

= { idter (4.47) }

iter.0.(a0c00b0d00 a0c01b0d01 alclObld10 alcllbldll)
= { iter (4.46) }

(a0c00b0d00 a0c01b0d01 alclObld10 alcllbldll)

4.3.3 Equivalence Between the Binary Networks
We first prove that the recursive network is isomorphic to the butterfly:
rec o inv = but (4.54)

Proof of (4.54). Base case omitted. Inductive step:
rec.(inv.(p | q))
= { inv (4.31) as defined in Chapter 2 }
rec.(inv.p > inv.q)
= { rec(4.49) }
rec.(inv.pol + inv.qo0) | rec.(inv.pol + inv.qol)
= { 4nvis a permutation function (4.17) }
rec.(1mv.(po0) + inv.(qo0)) | rec.(inv.(pol) + inv.(gol))
= { invis a permutation function (4.17) }
rec.(inv.(po0 + ¢o0)) | rec.(inv.(pol + gol))
= { induction (4.54) }

but.(po0 ++ qo0) | but.(pol ++ qol)
= { but(451)}

114

www.manharaa.com

but.(p | q)

End of Proof
Next, we prove that the recursive network is isomorphic to the mirror butterfly:
rec = inwv o tub (4.55)

Proof of (4.55). Base case omitted. Inductive step:
inv.(tub.(p > q))
= { tub (4.53) }
inv.(tub.(po0 + qo0) > tub.(pol + gol))
= { inv (4.31) as defined in Chapter 2 }
inv.(tub.(po0 + qo0)) | inv.(tub.(pol ++ gol))
= { induction (4.55) }
rec.(po0 + go0) | rec.(pol + gol)
= { rec(4.49) }
rec.(p > q)

End of Proof
It is an immediate consequence of (4.54) and (4.55) that
but o inv = inv o tub (4.56)

To enable us to prove that the iterative network is isomorphic to the other networks
we need the following lemma that gives a recursive structure definition of the labels

in an iterative network:

Lemma 13

k < loglen.p = {iterk.(pq)} = {uterkp} U {iterk.q} (4.57)

115

www.manharaa.com

Proof of (4.57) by induction on k. Base case k = 0
{iter0.(p > q) } = {iter.0.p} U {iter.0.q}
= { ifer (4.46) }
{p=q}={p} U {q}
= { {123}

true
inductive step: (we have (4.60) below)
Liter.(k+1).((p | @) = (u]v)}
= { Axiom (3.20) }
Liter-(h+1).((po<) | (g0))}
= { iter (4.47) }
Liter-b.(((p)00+ (53 0)00) 51 ((p = w)oL ++ (g 5 v)o1)) }
= { o is a scalar operator (2.15) }
{iiter.k.((po0 < uo0) + (o0 <1 v00) < (pol < uol) + (gol xwol)) }
= { induction (4.57) see (4.58) below }
{liter.k.((po0 <t uo0) + (go0 > v00)) }
U {iterk.((pol px uol) + (gol i vol)) }
= { + isscalar (2.15) }
{iter-k.((pe0 ++ qo0) >t (uol + v00)) }
U {#ter-k.((pol ++gol) > (uol ++wvol)) }
= { induction (4.57) see (4.59) below }
{iter.k.(po0 ++ qo0) } U { iter-.k.(uo0 + vo0) }
U { iter.k.(pol + gol) } U {iter.k.(uol ++vol) }
= { set union is symmetric }
{iter.k.(po0 + ¢o0) } U { iter-k.(pol ++qol) }
U {iter-k.(uo0 + vo0) } U { iter-k.(uol +vol) }
= { induction (4.57) see (4.59) below }

116

www.manharaa.com

{iter-k.((pe0 ++ qo0) > (pol +gol)) }
U {iter-k.((uo0 +v00) < (uol +wvol)) }
= { iter (4.47) }
{iter.(k+1).(p | q) YU {dter.(k+1).(u | v)}
End of Proof

In the proof above we need to establish that the inductive hypothesis was applied

correctly:

k < loglen.((po0 0t uo0) + (go0 > v00)) (4.58)

k < loglen.(pob++ qob) where b=0 V b=1 (4.59)

It is simple to show that these inequalities follow from the assumption
(k+1) <loglen.(p | q) (4.60)
We can now prove the isomorphism between the iterative and the butterfly networks:
{iter.k.p} = {but.p} where k = loglen.p (4.61)

Proof of (4.61). Base case omitted. Inductive step: assume k + 1 = loglen.(p | q)
{ater.(k+1).(p|q)}
= { iter (447) }
{iter-k.(po0 ++ go0 > pol +gol) }
= { Lemma 13 (4.57) is applicable, see (4.62) below }
{iter.k.(po0 + ¢o0) } U { iter.k.(pol ++gol) }
= { induction see (4.63) below }
{ but.(po0 + ¢o0) } U { but.(pol +gol) }
- ({2
{ but.(po0 + go0) | but.(pol ++gol)}
= { but(451)}
{but.(p|q)}
117

www.manharaa.com

End of Proof
In the proof above the following properties were left unproven:

k= loglen.p (4.62)

k< loglen.(po0 ++ go0) (4.63)

both follow from the assumption: k + 1 = loglen.(p | q).
In summary we have proven that the iterative, recursive, butterfly and mirror-

butterfly are isomorphic networks:

Theorem 1

{recp} = {tubp}
{butp} = A{rec.(inv.p)}

{butp} = {iterk.p} where k = loglen.p

Theorem 1 follows from (4.54), (4.56), (4.61) and (4.25).

4.3.4 Generalized Networks

The generalized networks consists of stages, where a stage is constructed using nodes
of the same arity. A node of arity m has the property that it can be configured to
realize any permutation of the values on its m input wires to its m output wires.
The networks may utilize different arities in different stages. It is the pattern used
in connecting the output wires from one stage of a network to the input wires of the

next stage that define a particular network topology.

4.3.5 Describing the Generalized Networks in PLists

In this section we describe the interconnection networks as PList functions of two

arguments. The first argument is a non-empty list (e.g., y>/) that describes the arity

118

www.manharaa.com

a0d0g0 a0d0g00b0e0h00c0f0i00
aldlgl a0d0g01b0e0h01c0f0i01
a0d0g02b0e0h02c0f0i02
b0eOhO
blelhl
aldlgl0Oble1lh10c1f1i10
c0f0i0 aldlgliblelhllclflill
clflil aldlgl2blelh12c1f1i12

Figure 4.8: Iterative Network with the Arities 2, 3 and 3

a0b0cO a0b0c00d0e0f00g0h0i00
d0e0f0 a0b0c01d0e0f01g0h0i01
gohoio a0b0c02d0e0f02g0h0i02
alblcl alblc10d1el1f10g1hli10
dlelfl alblclldlelfllglhlill
glhlil alblcl2difelfl2g1h1i12

Figure 4.9: Recursive Network with the Arities 2, 3 and 3

119

www.manharaa.com

a0d0g0 20d0g00b0e0h00c0f0i00

b0eOh0 a0d0g01b0e0h01c0f0i01
c0f0i0 a0d0g02b0e0h02c0f0i02
aldlgl aldlgl0blelh10c1f1i10
blelhl aldlgliblelhllclflill
ci1flil aldlgl2blelhl2c1f1il2

Figure 4.10: Butterfly Network with the Arities 2, 3 and 3

a a0b0cO a0b0c00d0e0f00g0h0i00
n alblcl alblc10d1lelf10g1h1i10
d0e0f0 a0b0c01d0e0f01g0h0i01

dlelfl alblclldlelfllglhlill

g0h0i0 a0b0c02d0e0f02g0h0i02

glhlil alblcl2dlelfl2glhlil2

Figure 4.11: Mirror Butterfly Network with the Arities 2, 3 and 3

120

www.manharaa.com

a a0b0c0
b alblcl
c a2b2c2
d d0e0f0
€ dlelfl
f d2e2f2

a0b0c00d0e0f00

alblc10d1lelfl0

a2b2c20d2e2f20

a0b0c01d0e0fOl

alblclldlelfll

a2b2c21d2e2f21

a0b0c02d0e0f02

alblcl2dlelfl2

a2b2c22d2e2f22

Figure 4.12: Mirror Butterfly Network with the Arities 3, 3 and 2

of the nodes in each column (e.g., y X y in the first row). The second argument is a

PList of length prod.l consisting of distinct strings; this argument corresponds to a

labeling of the boxes in the first column. The return value from such a function is a

PList that corresponds to a labeling of the nodes in the last column. The scheme for

labeling nodes is a generalization of the scheme used in the binary case. The main

difference is that the outputs from a node of arity n are labeled 0 through n — 1.

Figures 4.8 through 4.12 illustrate the generalized networks and the labeling con-

vention. The PList functions that define the generalized networks have the following

types:

ster : PosList x PList.String.n — PList.String.n

rec : PosList x PList.String.n — PList.String.n

but : PosList x PList.String.n — PList.String.n

tub : PosList x PList.String.n — PList.String.n

121

www.manharaa.com

These functions are defined by:

Iterative Network

defined.iter.(y>l).p = length.p = prod.l (4.64)
iter.[z).(a) = (a) (4.65)

iter.(xo(yo)).[[i:i €7 pi] = iter(ysl).[<j:j €T: [+i:i€F: (pi)oj]]
(4.66)

Recursive Network

defined.rec.(y>l).p = length.p = prod.l (4.67)

rec.[z].(a) = (a) (4.68)

rec.(x>(y>l)).[<i: 4 €7 p.i] [lj:7€T:rec(yvl).[+Hi:i€T: (pi)oj]]

(4.69)
Butterfly Network
defined.but.(y>l).p = length.p = prod.l (4.70)
but.[x].(a) = (a) (4.71)
but.(x>(y>l).Jli:i€y:pi] = [|7:7€T:but.(y>l).[+i:i €7 : (p.i)oj]]

(4.72)

Mirror Butterfly Network
defined.tub.(y >l).p = length.p = prod.l (4.73)
tub.]z].(a) = (a) (4.74)

tub.(z>(yvl)).[<i:i €G:pi] = [xj:jeET:tub.(yvl).[+ri:i€y: (p.i)oj]]

(4.75)

122

www.manharaa.com

4.3.6 Equivalence Between the Generalized Networks

We start by proving the isomorphism between the butterfly and the recursive net-
work. We prove this by showing that when the inputs to the recursive network
are permuted (using inv), then the resulting network is the same as the butterfly

network.

Lemma 14
rec.(x >1).(inv.l.p) = but.(x >l).p where length.p = prod.l (4.76)

Proof By induction over the length of [. Base case:
rec.[x].(inv.[].(a))
= { inw (4.30) }
rec.[z].(a)
= | rec (4.68) }
(a)
= { but (4.71)}
but.[x].(a)
Inductive step, length.[|i : i € §: p.i] = prod.(y >l):
rec.(z >(yol)).(inv.(y >l).[|i : i €7 : p.i])
= { inv(4.31)}
rec.(x >(y>l)).[<i: 1 €7 :invl.(p.i)]
= { rec (4.69) }
[|l7:7€T:rec(y>l).[+i:i€7: (invl.(p.i))oj]]
= { inv over scalar operators (4.16, 4.17) }
[|7:7 €T :rec(y>l).(invl.[+i:i €7 : (pi)og])]
= { induction (4.76), length.(inv.l.[4++1 : 1 € § : (p.i)oj]) = length.p.0 = prod.l }

[|7:7€T:but.(yvl).[+1i:1 €7 : (p.i)oj]]
= { but (4.72) }

123

www.manharaa.com

but.(z>(y>l)).[|i:i€T: p.i]

End of Proof

Next, we prove the isomorphism between the mirror butterfly and the recursive

network:

Lemma 15
tub.(x >1).p = inv.l.(rec.(x >1).p) where length.p = prod.l (4.77)

Proof By induction over the length of I. Base case:
inv.[].(rec.[z].(a))
= { rec (4.68) }
inv.[].(a)
= { inv (4.30) }
(a)
= { tub(4.74) }
tub.[z].(a)
Inductive step length.[|i i € § : p.i] = prod.(y >1):
inv.(x>l).(rec.(z>(y>l)).[x0 i €7 : pail)
= { rec (4.69) }
inv.(xl).[|j:j €T rec.(yvl).[+i:1€7: (p.i)oj]]
= { inv(4.31) }
[<j: 7 €T:mvl.(rec.(yvl).[+Hi: 1 €7 : (pi)oj])]
= { induction (4.77), length.([++1:i € §: (p.i)oj]) = length.p.0 = prod.l }
[<j:j €T tub(yvl).[+i:i €7y (p.i)oy]]
= { tub (4.75) }
tub.(z >(y>l)).[<i i €7 p.i]

End of Proof

124

www.manharaa.com

Combining Lemmas 14 and 15 we can prove the equivalence of the butterfly and the

mirror-butterfly networks:

Lemma 16

inv.(linrev.l).(tub.(x >1).p) = but.(z >1).(inv.(linrev.l).p) where length.p = prod.l
(4.78)

Proof

but.(z vl).(inv.(linrev.l).p)

= { Lemma 14 (4.76) }
rec.(x >1).(inv.l.(inv.(linrev.l).p))

= { property of inv (4.33) }
rec.(x >l).p

= { property of inv (4.33) }
inv.(linrev.l).(inv.l.(rec.(z >1).p))

= { Lemma 15 (4.77) }
inv.(linrev.l).(tub.(x >1).p)

End of Proof

We proceed by proving the equivalence between the iterative and the butter-
fly networks. For each network we construct the set of labels at its final stage; the
two networks are isomorphic when the two sets are equal. Before we can prove this

result we need a lemma that establishes a property of the iterative network.

Lemma 17

{iter.(yvl).[xj:jeT pgl}=Uj:0< 7 <az:{iter.(y>]).(p.7) })
where length.(p.0) > prod.l

(4.79)

Proof Base Case length.(a.0) > prod.|]

125

www.manharaa.com

{iter.[yl.[<j 7 €T :(aj)]}
= { iter (4.65) }
{5 €7+ {a)]}
= { definition { } (4.23) }
(Uj:0<j<z:{(aj)})
= { iter (4.65) }
(Uj:0<j<a:{iter[y].(a.7) })

Inductive step, where y * length.(p.0.5) > prod.(y 1)
{iter.(z>(y>l).[<xj:j€T:[|i:i€T:pij]]}
= { Axiom (4.9) }
{iter.(z>(yvl)).|i:i€G:[xj:je€T:p.ij]l}
= { iter (4.66) }
{iter.(yvl).[<k:ke€Z: [Hi:i€y:[xj:j€T:p.ijlok]}
= { commutativity of ok and [xi:i €7y :] (4.12) }
{iter.(yol).[<k:ke€zZ: [+Hi:i€g:[xj:j5€T: (pij)ok]]}
= { induction, see (4.81) below }
(Uk:0<k<z:{ater.(yvl).[Hi:i€y:[xy:jeT: (pij)ok]]})
= { commutativity [++i:i€y: Jand [<j:j€T:] (4.15) }
(Uk:0<k<z:{iter.(yvl).[xj:jeT:[Hi:i€7: (pij)ok]]})
= { induction, see (4.82) below }
(Uk:0<k<z:(Uj:0<j<az:{iter.(y>l).[+i:i€7: (pij)okl}))
= { set union commutes }
(Uj:0<j<a:(Uk:0<k<z:{iter.(yvl).[+i:i€7: (pij)ok]}))
= { induction see (4.83) below }
(Uj:0<j<a:{iter.(yvl).[<xk:kez:[+Hi:i€7y: (pij)ok]]})
= { iter (4.66) }

(Uj:0<j<ax:{iter.(z>(y>l)).[|i:i€7:p.ij]})

126

www.manharaa.com

End of Proof
The inductive assumption in the proof above is equivalent to
length.(p.0.5) > prod.l (4.80)

from which the following inequalities used in the proof above can be proven

length.[++i:i€y:[<j:j€T: (pij)e0]] > prodl (4.81)
length.[++i:i €y : (p.i.0)ol] > prod.l (4.82)
length.[++i:i €7 : (p.i.j)o0] > prod.l (4.83)

We only prove (4.81), as the proofs of the others are similar

Proof
length[++i:i€g:[xj:j €T : (p.i.g)o0]]
= { Property of [Hi:i€qy: | }
length.<j 1§ €T 2 (p.i.7)o0]
= { Propertyof [xj:jeT: |Jand o }
x * length.(p.0.0)
> {z>0}
length.p.0.0
> { inductive hypothesis (4.80) }

prod.l

End of Proof

We are now ready to prove the equivalence between the iterative and the butterfly

networks:

Lemma 18

{iter.(x>l).p} = {but.(z>l).p} where length.p = prod.l (4.84)

127

www.manharaa.com

Proof Induction over the length of [. Base case:
{iter.[x].(a) }
= { iter (4.65) }
{(a)}
= { but(4.71) }
{ but.[z].(a) }
Inductive step, where length.[|i: i € § : p.i| = prod.(y >I)
{iter(x>(yvl)).[|i:i €75 :pi]}
= { iter (4.66) }
{iter.(yvl).[<j:jeT: [Hi:i €7 (pi)oj]] }
= { Lemma 17, see 4.85 below }
(Uj:0<j<ax:{iter.(yvl).[+i:i€7y: (pi)oj|})
= { induction length.(p.i)oj = prod.(y >I) }
(Uj:0<j<z:{but(yvl)[+i:ie€y: (pi)jl})
= { definition of { } (4.24) }
{[lj:7 €T but.(yvl).[+i:ie€7: (pi)oj]]}
= { but (4.72) }
{llj:7 €T :but.(zv(yvl)).li:ieg:pi]]}

End of Proof
In the proof above we used
length.[++i :i € §: (p.i)o0] > prod.l

which follows from length.[|i : i € § : p.i] = prod.(y >l).

Theorem 2

defined.but.l.p = defined.iter.l.p

defined.but.l.p = defined.rec.l.p

128

(4.85)

(4.86)

(4.87)

www.manharaa.com

defined.but.l.p = defined.tub.l.p (4.88)

{butlp} = {iter.l.p} (4.89
{butlp} = {recl.(inv.l.p) } (4.

)
90)
{reclp} = {tubl.p} (4.91)
Equations (4.86), (4.87) and (4.88) follow by inspection, (4.89) follows from Lemma
18, (4.90) follows from Lemma 14 and (4.91) follows from Lemma 16.

4.4 Summary

Most of the permutation functions that we defined for PowerLists in Chapter 2 have
the property that they correspond to simple manipulations on the binary repre-
sentation of the position of elements of a PowerList. One of the advantages of the
PowerList notation is that it provides a layer of abstraction that is higher than that
of the indices of elements in a Powerlist. The PList theory extends this correspon-
dence to number systems in radix n for any n € Pos, allowing divide and conquer
solutions that break large problems into more than two subproblems.

In this chapter we described four binary interconnection networks by PowerList
functions, and their generalized counterparts were described by PList functions. We
were able to prove that the four network are isomorphic using algebraic techniques.
As far as the author knows this has not been achieved in the literature. None of the
proofs used indexing notations* and although the labeling we use can be thought
of as a “coding” of indices, we have confined ourselves to algebraic reasoning about
these labels.

The PList notation is very rich. It includes the PowerList theory as a special
case. While this generality is not always needed in order to describe parallel com-

putations, it may prove useful when the problem is stated in a different radix than

“This work was inspired by a paper by McIlroy and Savicki [MS97] where similar results were
proven using index-based notations.

129

www.manharaa.com

2, or in a mixed radix as in the case of the generalized networks discussed in this

chapter.

130

www.manharaa.com

Chapter 5

Conclusion

We start this chapter by surveying related research and comparing it to the work
presented in this dissertation. Then, we present future directions for research build-
ing on top of this work. We conclude the chapter by commenting on the lessons

learned from developing and studying the three data structures.

5.1 Related Work

In this section we start by surveying the PowerList literature and proceed by survey-
ing the related work done on other functional approaches to parallel programming.

Finally, we present work that is related to PowerLists, but use a different approach.

5.1.1 PowerLists

The work presented in this dissertation is an extension of the work done on PowerLists
developed by Misra. Misra [Mis94] presented the PowerList theory along with a
number of fundamental parallel algorithms, such as Batcher’s two sorting networks,
the Fast Fourier Transform and two algorithms for the Prefix Sum; Misra also

presented a theory for generalizing the notation to multidimensional PowerLists. We

131

www.manharaa.com

address the issue of multidimensional extensions of the three structures in Section
5.2.

Adams [Ada94] derived and verified two addition circuits in PowerLists in a
rigorous manner. We extended his main results to ParLists in Section 3.4, but did
not include the proofs of the lemmas that Adams introduced in order to prove the
equivalence of the circuits. Using a similar framework, Adams [Ada95] presented a
PowerList description of a multiplication circuit.

Many basic results of the PowerList theory, as presented in [Mis94], and
many of Adam’s results have been mechanically verified by Kapur and Subramaniam
[KS95, KS96a, KS96b] using the inductive theorem prover Rewrite Rule Laboratory.
Gamboa [Gam97] has verified many fundamental results about PowerLists using the
ACL2 theorem prover. His work focuses on the verification of Batcher’s sorting
networks as found in [Mis94].

The use of mechanical verification has been valuable for the PowerList re-
search. Many of the basic properties of PowerLists have been mechanically verified
in a more rigorous way than in the original proofs generated by humans. This rigor
is achieved by the use of theorem provers which require that all data structures and
applied methods be axiomatized before a proof that utilizes them can be completed.

The PowerlList data structure has been an interesting challenge for the theorem-
proving community [Kap94]. The constructors are partial, since they require that
their arguments have the same length, and a non-singleton PowerlList can be con-
structed using either >t and |. Another complication for automated theorem provers
posed by the PowerList theory is the use of two constructors. The current research
has dealt with this issue by regarding one constructor as fundamental and the other
as a derived operator. However, as seen in this dissertation, the equal treatment of
the two constructors is one of the strengths of the PowerList theory. It is unfortunate

that this symmetry does not carry over to automated approaches.

132

www.manharaa.com

In [AS96] Aschatz and Schulte present rules to transform PowerList func-
tions to programs with sequential work flows, aiming at an efficient implementation

on a Wavetracer machine’

. Their approach is somewhat unusual: they transform
PowerList descriptions into an intermediate language based on skeletons [Col89],
thereby eliminating most of the structure that is present in the Powerlist descrip-

tions. These skeleton descriptions are then transformed into the programming lan-

guage multiC [Wav92] that can be compiled for the Wavetracer architecture.

5.1.2 Functional Parallel Programming

Iverson developed the programming language APL [Ive62] based on the idea of ap-
plying a single operation to each element of a data structure. APL is a rich language
with many operators that allow complex algorithms to be expressed succinctly. The
theories presented in this dissertation have been developed with this goal in mind,
while keeping the number of built-in operators to a minimum.

Some very convincing arguments for functional parallel programming were
made by Backus in his Turing Award lecture [Bac78]. Backus proposed the paral-
lel functional language FP, based on the use of second-order functions (functionals,
like reduce and map defined for PowerlLists in Section 2.1) that manipulate basic
functions over linear lists. Basic functions are either data movement functions sim-
ilar to the ones we defined for PowerLists in Section 2.1.2 or scalar functions. FP
is equiped with an algebra that enables equality preserving transformations of FP
functions. With FP Backus provided the insight that it is just as important to
facilitate expressing what a parallel program should do, as expressing its execution
on a (parallel) architecture.

A main difference between FP and the structures that we have presented in

this dissertation is that FP lists are linear, i.e., they are accessed using < and >-like

YA Single Instruction Multiple Data (SIMD) 3-dimensional mesh architecture.

133

www.manaraa.com

operators. Parallelism in FP is introduced by evaluating the second order functions
in parallel.

Mou and Hudak [MH88, Mou90] presented Divacon, a very general func-
tional notation for describing divide-and-conquer programs. The Divacon notation
is meant to capture the entire class of divide-and-conquer algorithms. The em-
phasis of their work is to implement divide-and-conquer descriptions efficiently on
parallel architectures, and to demonstrate that these implementations are efficient.
By restricting the Divacon notation to certain patterns, Mou and Hudak presented
implementation strategies for certain architectures, such as hypercubes and mesh
oriented architectures. No algebra or formal tools were provided to prove the cor-
rectness of Divacon programs or to transform one description into another. For
these reasons it would be difficult to prove the kind of properties we have proven in
this dissertation.

Guy Blelloch developed and implemented the functional programming lan-
guage NESL [Ble95]. The language is based on nested parallelism over linear lists:
NESL functions can be applied to lists that may in turn contain lists as elements.
PowerLists as presented in [Mis94] do support this notion of nested parallelism.
NESL lists are dynamic in length, and in contrast with PowerLists there are no re-
strictions on the lengths of lists that are returned from functions. This enables a
NESL description of a parallel version of Quicksort, where the recursive calls can be
of unequal lengths as determined by the values of the input list and the chosen pivot
element. It does not appear that this algorithm can be expressed elegantly in the
structures presented in this dissertation. NESL was designed to produce efficient
implementations of parallel algorithms on actual architectures and to reason about
their theoretical complexity measures. Little consideration was given to providing
a framework to prove NESL programs correct.

The programming language Sisal [MSA*85] is a functional, parallel program-

134

www.manharaa.com

ming language designed for efficient compilations to existing parallel architectures.
The goal behind the language is to provide programmers with an alternative to
Fortran yielding more efficient implementations than optimizing Fortran compilers
can provide [Can92]. Sisal is based on the idea of single assignment variables, i.e.,
a “variable” that is either undefined or, if it attains a value, then its value does not
change in the remainder of the computation. Computations that expect a variable
to have a value are suspended until the variable gets a value; thus it is possible to

2. Sisal was designed to produce efficient implementa-

avoid many race conditions
tions; as a result, a number of “features” of other parallel functional language are
missing, such as higher order functions and built-in permutations. These features
were included in the proposal for a new version of the language [BCFO91] that has
not yet been implemented. In comparison to PowerList it is interesting to observe
that the fundamental data structure in Sisal is non-empty arrays. While Sisal pro-

grams are more concise than corresponding Fortran programs, they are not easily

amenable to formal proofs of correctness due to extensive use of indexing notations.

5.1.3 Bird-Meertens Formalism

The Bird-Meertens formalism [Bir89, Mee86, Ski94] has its roots in FP, but is more
general since it applies to a number of different categorical data types [Mal90], includ-
ing linear lists. In the following we present a simple version of the formalism based
on linear lists (constructed with the concatenation operator <), basic functions
and higher order functions. The key concept in the formalism is a list homomor-
phism, an algebraic property that a function (say h) over lists has if it “respects”
list construction, i.e.:

h.p$q)=hp ® hg (5.1)

2The concept of single assignment is also used in PCN [CT89, CT90], a notation for parallel
composition of sequential programs.

135

www.manharaa.com

for some associative operator ®. The functions sum, reduce and map are all exam-
ples of homomorphisms. A homomorphism like h above satisfies the following law?
[Bir89]:

h = reduce. ® o map.f where f.a = h.[a] (5.2)

and can be implemented in time proportional to the logarithm of the length of the
list on most parallel architectures [Ski94, Gor96].

The Bird-Meertens formalism is very rich, providing many interesting results
about functions over linear lists. Most of these results can be reused in the theories
we presented in this dissertation, since the data structures can be viewed as linear
lists by ignoring the way they were constructed. The Bird-Meertens formalism is
more abstract than the theories we presented, allowing the programmer to work at
a very high level of abstraction. However, such a high level of abstraction may also
deter the programmer from coming up with efficient solutions since most reasoning
is done with higher order functions.

Gorlatch [Gor96] adapted the Bird-Meertens formalism towards PowerLists
by restricting list concatenation to lists of the same length. He categorized a class of
functions called distributable homomorphisms that includes the prefix sum. He then
showed that this class has an efficient implementation on hypercubic architectures,
using a technique similar to the one we derived for the prefix sum algorithm on

hypercubes in Section 2.4.1.
5.1.4 Other Models for Parallel Programming

Ascend and Descend Algorithms

Preparata and Vuillemin [PV81] presented the cube-connected-cycles (CCC) a net-
work that has many of the topological properties of a hypercube, with only a con-

stant number of neighbors for each node. The n-dimensional CCC can be con-

3Where reduce and map are similar to the PowerList functions defined in Section 2.1.

136

www.manharaa.com

structed from an n-dimensional hypercube by replacing each hypercube node with
a ring of n nodes. The n incident edges to a hypercube node are assigned in their
dimensional order to the nodes in the corresponding ring on the CCC. Thus, each
node on the CCC has degree 3. The CCC and the butterfly networks have very sim-
ilar topologies [Lei92] and both can simulate hypercube algorithms efficiently. We
recall from Section 1.3 that H.f.n is the time that it takes to evaluate function f on
inputs of length 2" on a hypercube; similarly, we define B.f.n as a measure for simu-
lating the function on a butterfly (or CCC), this can be done with a polylogarithmic
slowdown:

B.f O (An=n?)«H.f

An even more important result in [PV81] is the classification of the group of
divide-and-conquer algorithms called Ascend and Descend, that in PowerList corre-
spond closely to deconstruction arguments with > and | respectively*. Preparata
and Vuillemin presented Ascend and Descend algorithms for Batcher’s merge and
the Fast Fourier Transform.

The class of Ascend and Descend algorithms are contained in the class of
normal algorithms, consisting of the hypercube algorithms that utilize adjacent di-
mensions in adjacent steps. It can be shown [Sch90] that a normal hypercube
algorithm ¢ can be simulated with a constant slowdown on a butterfly (and thus on
a CCQC):

gisnormal = B.gOH.y

Ruby

Ruby [JS90] is a relational algebra, developed by Jones and Sheeran for designing
integrated circuits at a high level. The goal of Ruby is to algebraically specify the

layout of the wires that connect computational elements. The advantage of this

“See for instance the definitions of rev given by (2.20) and (2.21).

137

www.manharaa.com

approach is that it is possible to reason formally about a circuit, while still being
able to draw its physical representation. The PowerList constructors can be found
in Ruby as predefined relations. They are not given any special treatment; instead
they are considered part of a “tool box” available to the circuit designer.

In [JS91] Jones and Sheeran present recursive descriptions in Ruby of the
Butterfly network, the Fast Fourier Transform algorithm, and Batcher’s sorting
networks. These descriptions were derived using geometrical considerations and are

more complex than the corresponding PowerList descriptions given by Misra [Mis94].

5.2 Future Work

PowerList

In Chapter 2 we established that many PowerlList functions can be implemented ef-
ficiently on hypercubic architectures. However, most parallel architectures are not
hypercubic or hypercube-like. More work is needed to present efficient implemen-
tations on common architectures, like the different mesh-based architectures that
prevail in the marketplace. One approach, suggested by Cole [Col89] in the context
of divide and conquer algorithms, is to lay out the computation using H-trees on a
2-dimensional mesh. This layout does not utilize all the processors of the mesh, and
thus other strategies need to be pursued in the search for an optimal solution.
Another approach to implementing PowerList, as well as ParLists and PLists, is
to map the functions to Sisal programs [MSA85]. This approach has the advantage

that Sisal has efficient implementations on many parallel architectures.

ParList

The issue of efficient implementations becomes even more interesting when we turn

to the ParList structure. The structure is obtained by adding sequential “alignment”

138

www.manharaa.com

steps to functions when they are applied to inputs of odd length. Using a mapping
strategy like the one we propose for Powerlist onto hypercubes, these alignment
steps can be mapped onto the same nodes as the sub-results they operate on.

We presented a strategy for extending an inductive proof of a property of
PowerList function, to a proof of the same property of the ParList function that is
obtained by adding an odd defining case. We did not formalize the process by which
this reuse can be achieved. It would be interesting to study in general how induction
proofs of properties over an inductively defined structure can be reused when the

structure is extended with new constructors.

PList

The presentation of the PList notation in this dissertation lays the foundation for
future work. Since the PList notation generalizes the PowerList notation, it follows
that all PowerList functions have PList descriptions. With PLists we can describe
algorithms where the number of sub cases identified in the divide phase of a divide
and conquer description may vary as a function of the input.

Since any number in Pos can be represented uniquely as the ascending se-
quence of its prime factors, a PList function like sum (defined in Section 4.2) can be
defined on PlLists of any positive length, by changing the predicate defined accord-
ingly®. This gives an alternative to the ParList theory for specifying functions over
inputs of arbitrary lengths.

This observation is interesting, but our goal has been to present abstractions
that have a close relationship to parallel architectures. As far as the author knows,
no one has built a practical parallel architectures based on the properties of prime

factorizations.

SFor sum this is not necessary, since all possible ways to break down a PList to singletons yields
the same result.

139

www.manharaa.com

Higher Dimensions

The three data structures can be extended to more than one dimension by repli-
cating the constructors for each dimension. This enables us to describe matrix
computations, using a similar approach to the one presented in this dissertation.
Misra [Mis94] presented an outline of this idea for PowerList. Preliminary results
using these extensions appear promising for the other data structures as well. Some
simple matrix algorithms have elegant descriptions in the higher dimension exten-
sions of PowerList; for example, we have descriptions of different versions of matrix
multiplication: the standard divide and conquer technique, the Strassen algorithm
[Str69] and the hypercube algorithm by Dekel, Nassimi and Sahni [DNS81]. The

latter algorithm is described using an extended version of PowerLists in [Kor94].

5.3 Final Comments

The three data structures we presented were useful in expressing parallel computa-
tions. Equally important was the use of formal techniques to derive many of these
descriptions from their specifications. This was possible because the structures were
designed for equational reasoning and the functional setting provided referential
transparency. The successful application of mechanical verification techniques to
the PowerList structure further validates the design of that structure.

We recognize that these three structures are not the final word in parallel
programming. There are classes of computations that only have awkward descrip-
tions in our structures. An example of such a computation is the parallel version of
Quicksort [Ble95], where subproblems have different sizes depending on the values
in the list to be sorted. However, we hope that we have demonstrated that for
computations with regular communication patterns, these structures allow elegant

and efficient solutions to be constructed and verified in a rigorous manner.

140

www.manharaa.com

Bibliography

[Ada94] Will E. Adams. Verifying adder circuits using powerlists. Tech-
nical Report CS-TR-94-02, University of Texas at Austin, Depart-
ment of Computer Sciences, March 1994. Available by ftp as
ftp://ftp.cs.utexas.edu/pub/techreports/tr94-02.ps.Z.

[Ada95] Will E. Adams. Multiplication circuits in powerlists. Unpublished

manuscript, 1995.

[ANSI90] American National Standard Institute. American National Standard
for Information Systems Programming Language Fortran (Fortran 90).

ANSI, X3.198 1991 edition, 1990.

[AS96] Klaus Achatz and Wolfram Schulte. Massive parallelization of divide-
and-conquer algorithms over powerlists. Science of Computer Program-

ming, 26(1-3):59-78, May 1996.

[Bac78] John W. Backus. Can programming be liberated from the von Neumann
style? A functional programming style and its algebra of programs.

Communications of the ACM, 21(8):613-641, August 1978.

[Bat68] K. Batcher. Sorting networks and their application. In Proceedings of the
AFIPS Spring Joint Computer Conference, volume 32, pages 307-314,
Reston, Va, 1968. AFIPS Press.

141

www.manharaa.com

[BCFO91] A. P. W. B6éhm, D. C. Cahn, J. T. Feo, and R. R. Oldehoft. SISAL
2.0 reference manual. Technical Report UCRL-MA-109098, Lawrence

Livermore National Laboratory, December 1991.

[Bir89] Richard S. Bird. Lectures on constructive functional programming.
In Manfred Broy, editor, Constructive Methods in Computer Science,

NATO ASI Series, pages 151-216. Springer Verlag, 1989.

[Ble89] Guy E. Blelloch. Scans as primitive parallel operations. IEEE Transac-
tions on Computers, C-38(11):1526 1538, November 1989.

[Ble90] Guy E. Blelloch. Vector Models for Data-Parallel Computing. MIT
Press, Cambridge, MA, 1990.

[Ble93] Guy E. Blelloch. Prefix sums and their applications. In John H. Reif,
editor, Synthesis of Parallel Algorithms, chapter 1, pages 33—60. Morgan

Kaufmann, San Mateo, California, 1993.

[Ble95] Guy E. Blelloch. NESL: A nested data-parallel language (version 3.1).
Technical Report CMU//CS-95-170, Carnegie Mellon University, School

of Computer Science, September 1995.

[Bre74] Richard P. Brent. The parallel evaluation of general arithmetic expres-

sions. Journal of the ACM, 21(2):201-206, April 1974.

[BWS88] Richard Bird and Philip Wadler. Introduction to Functional Program-
ming. Prentice Hall International Series in Computer Science. Prentice

Hall, 1988.

[Can92] David Cann. Retire Fortran? Communications of the ACM, 35(8):81
89, August 1992.

142

www.manharaa.com

[CKP193] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik
Schauser, FEunice Santos, Ramesh Subramonian, and van FEicken
Thorsten. LogP: Towards a realistic model of parallel computation. In
Proceedings of the Fourth ACM SIGPLAN Symposium on Principles €

Practice of Parallel Programming, pages 1-12, May 1993.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald E. Rivest. Intro-
duction to Algorithms. McGraw Hill, 1990.

[Col89] Murray Cole. Algorithmic Skeletons: Structured Management of Parallel
Computation. Research Monograms in Computer Science. MIT press,

1989.

[CT65] James W. Cooley and John W. Tukey. An algorithm for the machine cal-
culation of complex Fourier series. Mathematics of Computation, 19:297

301, April 1965.

[CT89] K. M. Chandy and S. Taylor. The composition of parallel programs. In
Supercomputing 89, pages b57-561, 19809.

[CT90] K Mani Chandy and Stephen Taylor. Primer for program composition
notation. Technical Report CS-TR-90-10, California Institute of Tech-

nology, 1990.

[Demb56] Howard B. Demuth. Electronic Data Sorting. PhD thesis, Stanford
University, 1956.

[DNS81] E. Dekel, D. Nassimi, and S. Sahni. Parallel matrix and graph algo-
rithms. STIAM Journal on Computing, 10(4):657-675, 1981.

[DS90] Edsger W. Dijkstra and Carel S. Sholten. Predicate Calculus and Pro-

gram Semantics. Springer Verlag, 1990.

143

www.manharaa.com

[Eck46] J. P. Eckert, Jr. A parallel channel computing machine. In H. H. Golds-
tine, H. A. Aitken, A. W. Burks, Jr. J.P. Eckert, J B. Mauchly, and J. von
Neumann, editors, The Moore School Lectures. The Moore School, Uni-
versity of Pennsylvania, 1946. Reprinted as The Moore School Lectures,
lecture 45, in volume 9 of the Charles Babbage Institute Reprint Series
for the History of Computing, by MIT Press and Tomash Publishers,
1986.

[Gam97] Ruben A. Gamboa. Defthms about zip and tie: Reasoning about pow-
erlists in ACL2. Technical Report CS-TR-97-02, The University of Texas

at Austin, Department of Computer Sciences, January 23 1997.

[Gor96] Sergei Gorlatch. Systematic efficient parallelization of scan and other
list homomorphisms. In Luc Bougé et al., editor, Proceedings of Furo-

Par’96, number 1124 in LNCS, pages 401-408. Springer Verlag, 1996.
[Grab3] Frank Gray. Pulse code communication. U.S. Patent 2,632,058, 1953.

[HIW*92] Paul Hudak, Simon L. Peyton Jones, Philip Wadler, et al. A report on
the functional language Haskell. SIGPLAN Notices, 1992.

[Ive62] Kenneth E. Iverson. A Programming Language. John Wiley & Sons,
New York, 1962.

[J4J92] Joseph JaJa. An Introduction to Parallel Algorithms. Addison Wesley,
Reading, MA, 1992.

[JH95] S. Lennart Johnsson and Ching-Tien Ho. On the conversion between bi-
nary code and binary-reflected gray code on binary cubes. IEEE Trans-
actions on Computers, 44(1):47 53, January 1995.

144

www.manharaa.com

[JS90] Geraint Jones and Mary Sheeran. Circuit design in Ruby. In Jgrgen
Staunstrup, editor, Formal Methods for VLSI Design, IFIP WG 10.5
Lecture Notes, chapter 1, pages 13 70. North-Holland, 1990.

[JS91] Geraint Jones and Mary Sheeran. Collecting butterflies. Technical Mono-
graph PRG-91, Oxford University, February 1991.

[Kap94] D. Kapur. Constructors can be partial too. Technical Report 94-16,
SUNY Buffalo, 1994.

[Kel89] Paul Kelly. Functional Programming for Loosely-Coupled Multiproces-

sors. Research Monograms in Computer Science. MIT press, 1989.

[Knu73] Donald E. Knuth. The Art of Computer Programming, Vol. 3 : Sorting
and Searching. Series in Computer Science and Information Processing.

Addison-Wesley, Reading, 1973.

[Kor94] Jacob Kornerup. Mapping powerlists onto hypercubes. Techni-
cal Report CS-TR-94-05, University of Texas at Austin, Depart-
ment of Computer Sciences, August 1994. Available for download as

ftp://ftp.cs.utexas.edu/pub/techreports/tr94-05.ps.Z.

[Kor95] Jacob Kornerup. Mapping a functional notation for parallel programs

onto hypercubes. Information Processing Letters, 53:153—-158, 1995.

[Kor97a] Jacob Kornerup. Odd-even sort in powerlists. Information Processing

Letters, 61:15 24, 1997.

[Kor97b] Jacob Kornerup. Parlists a generalization of powerlists. In Christian
Lengauer, editor, Proceedings of Euro-Par’97, LNCS. Springer Verlag,
1997. To appear.

145

www.manharaa.com

[Kor97c] Jacob Kornerup. Parlists - a generalization of powerlists (extended ver-
sion). Technical Report CS-TR-97-15, University of Texas at Austin,
Department of Computer Sciences, June 1997. Available for download

as ftp://ftp.cs.utexas.edu/pub/techreports/tr97-15.ps.Z.

[KR90] Richard M. Karp and Vijaya Ramachandran. Parallel algorithms for
shared memory machines. In Jan van Leeuwen, editor, Handbook of

Theoretical Computer Science, volume A. Elsevier North-Holland, 1990.

[KS95] D. Kapur and M. Subramaniam. Automated reasoning about parallel
algorithms using powerlists. In Vangalur S. Alagar and M. Nivat, editors,

AMAST 95, volume 936 of LNCS, page 416. Springer-Verlag, 1995.

[KS96a] D. Kapur and M. Subramaniam. Automating induction over mutually

recursive functions. Lecture Notes in Computer Science, 1101:117, 1996.

[KS96b] D. Kapur and M. Subramaniam. Mechanically verifying a family of

multiplier circuits. Lecture Notes in Computer Science, 1102:135, 1996.

[Las86] Clifford Lasser. The essential *lisp manual. Technical report, Thinking
Machines Corporation, Cambridge, MA, July 1986.

[Lei92] Frank Thomson Leighton. Introduction to Parallel Algorithms and Archi-
tectures: Arrays e Trees o Hypercubes. Morgan Kaufmann, San Mateo,

CA 94403, 1992.

[LF80] Richard E. Ladner and Michael J. Fischer. Parallel prefix computation.
Journal of the ACM, 27(4):831 838, October 1980.

[Mal90] Grant Malcolm. Algebraic Data Types and Program Transformation.
PhD thesis, Rijkuniversiteit Groeningen, September 1990.

146

www.manharaa.com

[McC91] William F. McColl. General purpose parallel computing. In A. M. Gib-
bons and P. Spirakis, editors, Lectures on Parallel Computation, Spring
School on Parallel Computation, pages 337 391. ALCOM, Cambridge
University Press, 1991.

[Mee86] Lambert Meertens. Algorithmics — towards programming as a math-
ematical activity. In CWI Symposium on mathematics and Computer

Science, pages 289-334. North-Holland, 1986.

[MH88] Zhijing G. Mou and Paul Hudak. An algebraic model for divide-and-
conquer and its parallelism. The Journal of Supercomputing, 2(3):257
278, November 1988.

[Mis94] Jayadev Misra. Powerlist: A structure for parallel recursion. ACM
Transactions on Programming Languages and Systems, 16(6):1737 1767,
November 1994.

[Mis96] Jayadev Misra. Generalized powerlists. Unpublished manuscript, May
1996.

[MK97] Jayadev Misra and Jacob Kornerup. Describing structures of intercon-

nection networks. In preparation, 1997.

[Mou90] Zhijing G. Mou. A Formal Model for Divide-and-Conquer and Its Par-
allel Realization. PhD thesis, Department of Computer Science, Yale
University, May 1990.

[MP89] Ernst W. Mayr and Greg Plaxton. Pipelined parallel computations, and
sorting on a pipelined hypercube. Technical Report STAN CS-89-1261,

Department of Computer Science, Stanford University, 1989.

[MS97] M. Douglas Mcllroy and Joseph P. Savicki. Routing and complexity of

rearrangeable networks. Personal Communication, 1997.

147

www.manharaa.com

[MSA*85] James McGraw, Stephen Skezielewski, Stephen Allan, Rod Oldehoeft,
John Glauert, Chris Kirkham, and Robert Thomas. SISAL: Streams
and Iterations in a Single Assignment Language. Lawrence Livermore

National Laboratory, Reference manual version 1.2. manual M-146, Rev.

1 edition, March 1985.

[MTHY90] Robin Milner, Mads Tofte, and R. Harper. The Definition of Standard
ML. MIT Press, 1990.

[Ofm63] Yu. Ofman. On the algorithmic complexity of discrete function. Soviet
Physics Doklady, 7(7):289 591, 1963.

[PV81] Franco P. Preparata and Jean Vuillemin. The cube-connected cycles:
A versatile network for parallel computation. Communications of the

ACM, 24(5):300 309, May 1981.

[RS87] John R. Rose and Guy L. Steele Jr. C*: An extended language for data
parallel programming. In Proceedings Second International Conference

on Supercomputing, volume 2, pages 2—-16, San Francisco, CA, May 1987.

[Sch90] E. Schwabe. On the computational equivalence of hypercube-derived
networks. In Proceedings of the 2nd Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 388-397. ACM, July 1990.

[Sew54] Harold E. Seward. Information sorting in the application of electronic
digital computers to business operations. Master’s thesis, Stanford Uni-

versity, 1954.

[Ski94] David B. Skillicorn. Foundations of Parallel Programming. Series in
Parallel Computation. Cambridge University Press, 1994.

[Sto71] H. S. Stone. Parallel processing with the perfect shuffle. JEEE Transac-
tions on Computers, C-20(2):153 161, 1971.

148

www.manharaa.com

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische Math-

ematik, 13:354-356, 1969.

[Tur86] David Turner. An overview of Miranda. ACM SIGPLAN Notices,
21:156 166, 1986.

[Wav92] Wavetracer, Inc. MultiC Basics for DTC Systems, 1992.

149

www.manharaa.com

Vita

Jacob Kornerup was born on September 14, 1963 in Arhus, Denmark. He attended
Kochs Skole in Arhus for the first through fifth and seventh through ninth grades. He
traveled with his family to Lafayette, Louisiana in 1975, where he attended Prairie
Elementary School for the sixth grade. He attended gymnasium (high school) at
Arhus Katedralskole from 1979 to 1982, receiving his studentereksamen with the
highest grade point average in his graduating class.

In September of 1982 he enrolled at the University of Arhus, studying math-
ematics and computer science. In 1984 he was appointed as a teaching assistant in
the computer science department, a position he held until he graduated. He finished
his minor in mathematics in 1985 and completed his Cand. Scient. (Masters degree)
in computer science in February 1988. In March 1988 he was awarded a two and a
half year postgraduate scholarship from the University of Arhus for Ph.D. studies
at the University of Texas at Austin.

In August of 1988 he moved to Austin, Texas, enrolling in the Ph.D. pro-
gram in Computer Sciences at the University of Texas at Austin. In 1990 and
1991 he worked as a teaching assistant in the department. From 1991 to 1995 he
was employed as a research assistant by his dissertation advisor, Professor Jayadev
Misra, Ph.D., under support from grants from: Texas Advanced Research Program,
the National Science Foundation, and The Office for Naval Research. In 1995, he

worked as an Assistant Instructor in the department, teaching an undergraduate

programming class.

150

www.manharaa.com

Permanent Address: 6735 Old Quarry Lane
Austin, TX 78731

e-mail: jkornerup@acm.org

This dissertation was typeset with IATEX 2:% by the author.

STATREX 2¢ is an extension of WTEX. TEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin.

151

www.manharaa.com

