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Data Structures for Parallel RecursionPublication No.Jacob Kornerup, Ph.D.The University of Texas at Austin, 1997Supervisor: Jayadev MisraParallel programming is still considered a di�cult and error-prone activity. Thereare no universally accepted abstractions that both capture the essence of most par-allel architectures, and are useful to the programmer in expressing parallel compu-tations.In this dissertation we present three data structures: PowerList, ParList, andPList that can be used to describe parallel computations in a succinct manner. Wede�ne an algebra along with the inductive de�nition of each structure. Parallel com-putations are expressed as recursive functions over these de�nitions. The algebrasfacilitate equational reasoning allowing functions representing parallel computationsto be derived from their speci�cation.PowerLists are linear structures whose lengths are a power of two. We ex-tend Misra's results [Mis94], by describing a mapping of the PowerList operators tohypercubic architectures and by formally deriving the odd-even transposition sort.The ParList structure is an extension to the PowerList structure that allowsinputs of arbitrary lengths. We present the theory and show how functions andproperties of PowerLists can be extended to ParLists.vii
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The PowerList structure is closely related to binary numbers. We generalizePowerLists to PLists by introducing basic constructors that take an arbitrary, positivenumber of similar PLists and return a single PList. PLists can be used to reasonalgebraicly about manipulations on mixed-radix representation of natural numberswith minimal use of index notations. Using PLists we describe four generalizedinterconnection networks and show that they are isomorphic.
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Chapter 1
Introduction

\The arguments for parallel operation are only valid provided one appliesthem to the steps which the built in or wired in programming of themachine operates. Any steps which are controlled by the operator, whosets up the machine, should be set up only in a serial fashion. It hasbeen shown over and over again that any departure from this procedureresults in a system which is far too complicated to use."The above statement was made by J. P. Eckert, Jr. in 1946 [Eck46] (as cited in[Kel89]) in an argument for parallel data transfer and arithmetic in the computersof the EDVAC's generation. The statement gave a rather pessimistic outlook forthe spread of parallel programming as performed by the operator. Since 1946 anumber of innovations such as high level languages, compilers, theories and logicshave made parallel programming an easier and more reliable task. But, even withthese advances, it can be argued that Eckert's statement can be accepted today.Parallel programming is still di�cult and error prone in comparison with sequentialprogramming, where tools and methodologies are available to produce correct andreliable programs. This does not mean that sequential programs are error free andcan be delivered on schedule, but today it is well understood how to write such1
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programs correctly.There are a number of success stories in parallel programming. Most of theso called \grand challenge problems" such as large-scale simulations and modelingproblems can only be solved by exploiting parallelism. This is usually done on par-allel hardware sold by the super-computing industry. An industry that has grownas government and defense agencies and corporate research facilities have increasedtheir demand for computational power. Parallel programming is also necessitatedby dedicated parallel hardware such as digital signal processors and imaging hard-ware. These applications for parallel programming tend to stay close to the \built inor wired in programming" mentioned by Eckert, i.e., they are performed by highlytrained experts. A pessimist may still adopt the view that non-expert program-mers who attempt to write a parallel program, will produce \a system which isfar too complicated to use." We will not advocate such a pessimistic view in thisdissertation, but the premise does stand that parallel programming is di�cult, andmethodologies need to be developed to make the task simpler and more reliable.This dissertation is an attempt to present such a methodology, a simple way to ex-press parallel computations while allowing formal veri�cations of their correctness.This dissertation is written with a �rm belief in the use of Formal Methods,that is the use of tools and techniques based on mathematical models of computa-tions and architectures in the development of software. Combining this belief withan identi�cation of the main tasks in software development, we identify the followingthree stages in the software development process:Speci�cation: Constructing a formal description of the problem to be solved. Allparticipants in the development process should be in agreement that this de-scription captures the essence of the problem. The speci�cation should beamenable to a formal proof that can verify that a program meets it.Program construction: The task of creating an artifact that meets the speci�ca-2
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tion of the problem and can be implemented e�ciently on the target architec-ture.Implementation The mapping of the the program onto the computing resourcesavailable for its execution. This should be done using tools or techniques thathave been formally veri�ed or has been under intense scrutiny by a large poolof users. A commonly used compiler is an example of such a tool.In sequential programming the implementation phase is usually handled bya compiler capable of producing optimized code for the target architecture. Suchcompilers are possible since most sequential architectures are similar at higher levelsof abstraction, and di�erences at the lower levels can be exploited by the compilerto generate e�cient code for each architecture. The similar architectures have theadded advantage that high level languages can be designed with ease of expression inmind without sacri�cing e�cient compilation strategies. This gives programmers ofsequential systems the luxury of focusing on the correctness and abstract complexityof their programs, letting the compiler implement their programs e�ciently andcorrectly.Parallel architectures are very di�erent from each other, even at higher levelsof abstraction1. One approach to designing a parallel programming language is tolet the language reect a particular architecture, and aim for e�cient compilationsto the architecture. This approach may be successful for writing programs for a spe-ci�c architecture, for example signal processing software for customized hardware.This is not an attractive solution, since most programming problems are not phrasedin terms of concrete architectures, leaving the programmer with the wrong set ofabstractions. Another approach is to abstract away from most architectural consid-erations, and build a programming language around abstract notions of parallelism.This approach allows the programmer to concentrate on \what needs to be done"1We will discuss some of these di�erences in Section 1.3.23
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rather than \how it can be done on the architecture." We take the second approachin this dissertation, by presenting three formalisms for expressing parallel programsas recursive functions. These formalisms are designed to utilize the symmetry foundin most parallel architectures by emphasizing symmetric programming constructs.A signi�cant amount of parallel software is now written in sequential pro-gramming languages extended with \parallelism constructs." These constructs allowthe programmer to specify how selected portions of the program can be executedin parallel, and how data are assigned to physical processors. Examples of suchlanguages are FORTRAN-90 [ANSI90], C* [RS87], *Lisp [Las86], multiC [Wav92]and many others. The use of such languages is close to an acceptance of Eckert'sstatement, since the programmer is only trusted with a sequential language.Some compilers are designed with this acceptance in mind. They examinethe sequential parts of the program in an attempt to discover independent threadsof control that can be parallelized. So far there are no success stories where suchcompilers were able to identify signi�cant amounts of parallelism from sequentialprograms, except where the independence between subcomputations (i.e., paral-lelism) is obvious even in a sequential description.1.1 Synchronous Parallel ProgrammingIn this dissertation we focus on synchronous parallel programming, characterizedby architectures where a collection of processing elements operate in a \lock step"manner. A synchronous parallel programming notation should capture the factthat many things happen at once during a parallel execution. Take as an examplethe problem of incrementing each element of a vector of numbers by one. Theincrement operations are independent, and can be performed in any order includingsimultaneous application. On a parallel machine where the number of availableprocessors exceeds the length of the vector, this operation can be achieved in a4
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single step, if each element can be accessed directly by its dedicated processor.This example falls into a particular category of parallel computations: a function isapplied independently to each element of a linear structure. It is important to beable to capture these computations in a parallel programming notation, but we donot stop with such constructs; they can already be expressed in sequential languageswith extensions for parallelism.Many programming problems have solutions that can be characterized asdivide and conquer. Depending on the size and structure of the problem it is eithersolved directly, or broken into smaller problems that can be solved recursively; thesesolutions are then combined to form the answer. The increment problem describedabove has a simple divide and conquer description: the element of a single-elementvector is incremented; a vector whose length is at least two is broken into twodisjoint sub vectors, where the increment operation is performed separately on eachcomponent; �nally, the resulting sub vectors are combined in their original orderto form the resulting vector. Note that we presented an abstract solution to theproblem. An implementation may choose to apply the increment directly to eachelement of the vector; this would be consistent with the divide and conquer solution.We base our theories on functions over linear data structures. We de�ne thesestructures as symmetrically as possible, in order to equalize the size of the recursivetasks generated by the divide and conquer strategy. This is done to exploit thesymmetry present in most parallel architectures. We give two di�erent ways toconstruct linear structures from a pair of equally sized sub-structures, either byconcatenation or by interleaving2. The choice between these two constructions givethe programmer an extra degree of freedom, and makes it possible to express manyparallel programs elegantly.Our choice of a functional notation is inuenced by the successes of sequen-2These constructions will be clari�ed further when we de�ne the PowerList, ParList, and PListnotations in Chapters 2, 3 and 4. 5
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tial functional programming languages. A functional program can often be speci�eddirectly by presenting a function that solves the problem. This function may not bethe most e�cient implementation available, as we saw with the increment problemabove. It is often possible to prove that functional descriptions representing moree�cient implementations compute the same function. These proofs can often bedone using equational reasoning, that is through a series of identity preserving stepsthat transforms one function into the other. Some proofs can be done as deriva-tions: starting from the speci�cation function, the e�cient implementation emergesthrough a series of equality preserving steps. Ideally, the choice of the next trans-formation is given from the shape of the current formula and heuristics that havebeen developed for the particular problem domain. We will see this technique usedthroughout this dissertation. In this work we spend our e�orts on creating the rightabstractions to express certain parallel computations, rather than presenting a com-plete programming language. We leave the detailed design decisions of a full-edgedprogramming language to others.We use algebraic constructors for the data structures as the only way toaccess their individual elements. It is the author's belief that a main reason whyparallel programming is so di�cult today is the widespread use of indexing notationsin parallel programming languages. The programming task becomes a painstakingbookkeeping job, and proofs of correctness become nightmares rather than creativeand enlightening activities. Many architectures and algorithms are built on nicealgebraic properties; it is our goal to capture these properties as elegantly as possiblein the structures and theories we de�ne.1.2 Basic De�nitions and NotationsIn this section we introduce the type system, notations and conventions that will beused in the rest of this dissertation. 6
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1.2.1 TypesIn this dissertation we de�ne three linear data structures: PowerList, ParList andPList. We introduce a simple type system, to be precise about the types of thesestructures and the use of types in general. We use the name Type to denote theclass of all types of interest3. We will not do any manipulations on the class Typeas a whole, only on elements of it.We use the following basic data types:Type name De�ned asNat The natural numbersPos The positive natural numbersReal The real numbersCom The complex numbersBool The booleansIn Chapter 4 we de�ne aggregate types such as linear lists (List), strings (String) andsets (Set). We use the type variables A, B, C, L, M, X, Y and Z to denote elementsof Type and, unless explicitly restricted in the text, these variables are universallyquanti�ed over Type. The type of a function is speci�ed by giving the name of thefunction, its domain and its range. For example, the successor function succ on Nathas the type succ : Nat �! Nat . We use � to denote pairing of types (e.g., Nat�Natis the type of all pairs on natural numbers). This notation will primarily be usedto denote that a function has more than one argument. We use exponentiation ofa type by a natural number to denote the multi-way pairing of a type (e.g., Nat2denotes the same type as Nat� Nat).We formalize the types of the PowerList, ParList and PList structures byintroducing a type function for each structure. These functions take two arguments,3If this de�nition troubles the reader, then it should be ignored and Type should only be thoughtof as a name of some abstract collection. 7
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a type and a length, and return the type of all instances of the structure withelements of the given type and length equal to the given length. As an example wede�ne ParList by the type function4ParList : Type� Pos �! Type (1.1)which returns the type containing all ParLists with elements from Type, whose lengthis as speci�ed by the second argument. For example, ParList:Nat:2 denotes the typeof all ParLists of length 2 with natural numbers as elements. We overload the nameParList by having it denote the type of all ParLists (corresponding to ParList:X:nfor all X and n). We also use ParList as a name for the algebra we de�ne to proveproperties of ParLists.We will only write expressions that have a correct type as de�ned by thetype constructors for the structure. In the ParList algebra, for example, when wewrite p ./ q it is understood that p and q are similar ParLists (i.e., both members ofParList:X:n for some X and n). When we write a .p we assume that a is similar tothe elements of p. These conventions apply to the PowerList and PList algebras aswell. A type that is not a PowerList, ParList or a PList is called a scalar type.1.2.2 Operator PriorityWe give di�erent binding powers to binary operators, as prescribed by the tablebelow, to minimize the use of parentheses in expressions. The operators in the tableare grouped in decreasing binding power downwards; within a group the operatorshave the same binding power:4A function like ParList is often called a type constructor [MTH90].
8
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:!  G! G � �" # � 
 + � ? � � mod ++. /./ j ./G jG� }� < = 6= � �) (^ _���!1.2.3 Notation and Proof StyleWe will use a notation similar to that presented by Dijkstra and Scholten [DS90],which includes writing function application by an in�x, left associative dot \." op-erator; for example, f:x denotes the value returned by the function f when appliedto the argument x . When a function has more than one argument we write asequence of arguments separated by the dot operator, denoting an implicit curry-ing of the function. For example, g:a:b is the same as (g:a):b by left associativity,since we identify g : A� B �! C with g : A �! (B �! C). By currying we haveg:a : B �! C.Proofs and derivations are written with lines containing formulas separatedby lines that have a relational operator and a piece of text (called a \hint") thatexplains why the preceding and the following line are related by the operator. Forinstance, a proof of the boolean expression P ) R is true could be written as:9
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Proof of P ) RR( f hint explaining why R ( Q gQ� f hint explaining why Q � P gPEnd of ProofOccasionally we break formulas and hints across more than one line. The indentationof the following line should make it clear that this has taken place. Formulas arelabeled with numbers of the form (m:n) wherem is the number of the chapter wherethe formula is introduced and n is a running counter within each chapter. Thesenumbers are used in hints and in the text to refer to the de�nition of a formula.When a function name is given with such a number in a hint, it refers to the formulathat de�nes the function.The functional notations we de�ne enjoy the referential transparency prop-erty [BW88]; that is, variables do not change their values within the context oftheir de�nition, and can thus be substituted using a simpli�ed version of the Ruleof Leibnitz :(8x; y; f : x; y 2 A ^ f 2 (A �! B) : x = y ) f:x = f:y ) (1.2)Above we used the quanti�ed notation from [DS90] where the dummies are x, y, f ,the range is x; y 2 A ^ f 2 (A �! B) and the term is x = y ) f:x = f:y. Therange restricts the values of the dummies within the quanti�cation; thus, we omitthe range if it is obvious from the context. We also use this notation for operatorsthat are associative and commutative. We can write a well-known identity by:(+i : 0 � i ^ i < n : i) = n � (n� 1)2 (1.3)10
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When the operator has an identity element, the range may be empty (i.e., false) andthe value of the quanti�cation is the unit element. The quanti�cation in (1.3) hasthe value 0 when n = 0. We use the shorthand 0 � i < n to specify the range of thenatural numbers in (1.3).We use lambda abstraction to de�ne anonymous functions; for example,(�n :: n � n)is the function that returns the square of its argument.All free variables in formulas are universally quanti�ed over their type, unlessrestricted in the surrounding text. We use the following conventions for namingvariables unless stated otherwise in the context:a; b; c; d; e; f; g; h; x; y; z Scalarsp; q; r; s; t; u; v; w PowerLists, ParLists or PListsi; j; k;m; n Nat or Posl ListA, B, C, L, M, X, Y, Z TypeThe choice between PowerLists, ParLists or PLists is determined by the enclosingchapter or section.1.3 Cost CalculusIn this section we develop a cost calculus that enables us to estimate the time usedby an algorithm when mapped to a particular architecture. In Chapter 2 we willuse this calculus to quantify the running times of PowerList functions mapped ontohypercubes.
11
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Big O notationIn the literature an upper bound of the growth of a function is often given with the\big O" notation, e.g., log :n = O(pn)which states that the logarithm function grows no faster than the square root func-tion. In general, \big O" is de�ned by:g:n = O(f:n) � (9c;m : c > 0 ^ m � 0 : (8n : n � m : g:n � c � f:n)) (1.4)Thus, g has a slower growth than that of f for all arguments beyond a certain point.While the concept of bounding the growth of a function is important, thisnotation is problematic due to the use of the equality operator, a symmetric relation.This prevents equational reasoning using the \big O" notation. Most good expo-sitions of the notation make cautionary remarks about its use. Cormen, Leisersonand Rivest acknowledge this potential abuse of notation in their textbook [CLR90].They de�ne O as a function that maps natural valued functions to sets of naturalvalued functions, and state complicated rules to interpret equalities containing O.An alternative to this approach is to view O as a relation on natural valuedfunctions: O : (Nat �! Real)� (Nat �! Real) �! BoolgO f � (9c;m : c > 0 ^ m � 0 : (8n : n � m : g:n � c � f:n)) (1.5)As a relation O is reexive and transitive, but neither symmetric nor anti-symmetric.Viewed this way O introduces a preorder on the set of functions in (Nat �! Nat)The relation O provides an upper bound for the \growth" of a function. Itsdual 
 provides a lower bound for the growth of a function:g
 f � (9c;m : c > 0 ^ m � 0 : (8n : n � m : g:n � c � f:n)) (1.6)It is simple to prove 12
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Lemma 1 fO g � g
 fProof LemmafO g= f De�nition of O (1.5) g(9c;m : c > 0 ^ m � 0 : (8n : n � m : f:n � c � g:n))= f Arithmetic, c > 0 g(9c;m : c > 0 ^ m � 0 : (8n : n � m : 1=c � f:n � g:n))= f Change of dummy d := c, arithmetic g(9d;m : d > 0 ^ m � 0 : (8n : n � m : g:n � d � f:n))= f De�nition of 
 (1.6) gg
 fEnd of ProofFrom this it follows that only one of O and
 is needed.The relation� gives both an upper and a lower bound on the growth of afunction, it is de�ned by:f� g � (9c; d;m : c > 0 ^ d > 0 ^m � 0 : (8n : n � m : c�g:n � f:n ^ f:n � d�g:n))(1.7)The relation � can be replaced by:f� g� f � (1.7) g(9c; d;m : c > 0 ^ d > 0 ^m � 0 : (8n : n � m : c � g:n � f:n ^ f:n � d � g:n))� f predicate calculus, and arithmetic g(9d;m : d > 0 ^ m � 0 : (8n : n � m : f:n � d � g:n))^ (9c;m : c > 0 ^ m � 0 : (8n : n � m : c � g:n � f:n))� f de�nitions of O (1.5) and 
 (1.6) g13
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fO g ^ f
 g� f Lemma (1) gfO g ^ gO fThese two derivations establish that the relation O is fundamental for statingcomplexity bounds.To facilitate proofs we introduce a modi�ed less-than relation on functionsover the naturals . : (Nat �! Real)� (Nat �! Real) �! Bool , denoting that abovesome threshold the left function yields values below those of the right function:f . g � (9n :: (8k : k � n : f:k � g:k)) (1.8)The functions one : Nat �! Nat and id : Nat �! Nat are de�ned byone = (�n :: 1) (1.9)id = (�n :: n) (1.10)They are used to measure the complexity of the functions we de�ne. The followinglemma is useful in solving recurrences over NatLemma 2(9c : c 2 Nat : (�n :: f:(n+ 1)) . (�n :: f:n+ c)) ) f O id (1.11)(�n :: f:(n+ 1)) . f ) f O one (1.12)(9c : c 2 Nat : f . (�n :: c)) ( f O one (1.13)
1.3.1 Parallel Algorithm ComplexityTo motivate the cost calculus we introduce some basic concepts from parallel algo-rithm complexity theory as presented in the literature (e.g., [KR90, J�aJ92]). Assume14
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that we are studying a parallel algorithm that solves a particular problem, parame-terizable by the size of the input n. Let S:n denote the time complexity of the bestknown sequential algorithm that solves a problem of size n, and let P:n be the timecomplexity of the algorithm that we are studying. According to Brent's SchedulingPrinciple [Bre74] P:n � S:n=p (1.14)where p is the number of processors used by the parallel algorithm. An operationalinterpretation of Brent's Scheduling Principle is that any parallel algorithm can besimulated on a uniprocessor machine, by having the single processor in turn act aseach of the p parallel processing elements. In p steps the single processor simulatesone step of the parallel algorithm. This is a simpli�ed simulation, since the inter-mediate states produced by the simulation may corrupt the sequential simulation.This can be remedied by replicating the values of the variables read by the parallelstep before each step is simulated by the uniprocessor.For a parallel algorithm it is not always the case that all processors are doingsomething useful in each step. Consider the problem of computing the sum of theelements of a list. This can be done in parallel by placing the elements of the listin the leaves of a binary tree. At each step the processor assigned to a node ofthe tree performs the addition of the values stored at its children, if these valueshave been computed. In a balanced binary tree the number of additions performedat the leaves is half the length of the list, whereas only one addition is performedat the root. Due to the data dependency inherent to the problem, the additionat the root cannot be performed before the other additions in the tree have beenperformed. This means that at the last step of the computation only one processorwill be active.To measure how e�ciently a parallel algorithm is utilizing the processors weintroduce the notion of the cost, C:p, of a parallel algorithm using p processors,15



www.manaraa.com

de�ned by: C:p:n = P:n � pA parallel algorithm is considered optimal ifC:p O SNext, we de�ne the reexive and transitive relationPfP g � (9k : k � 0 : fO (g � logk)) (1.15)that states that f grows no faster than the product of g and some logarithmicpolynomial. A parallel algorithm is considered to be e�cient ifC:p P S (1.16)For the problem of computing the sum of a list, using a tree structure, we have thefollowing relationships (see the proof below for explanations):id O S (1.17)P P one (1.18)C:p O P � id (1.19)From the above we can prove that this scheme is e�cient:C:p P S (1.20)Proof of (1.20)C:pO f p is at most input size (1.19) gP � idO f summing is linear (1.17); monotonicity of � under O (1.21) gP � S 16
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P f tree has logarithmic height (1.18); monotonicity of � under P (1.22) gone � S� f property of one gSEnd of ProofIn the proof we used the following monotonicity properties of multiplication withrespect to O and P : fO h ) g � f O g � h (1.21)f P h ) g � f P g � h (1.22)(1.20) follows from the derivation above and the following \transitivity" properties:fO g ^ gP h ) fP h (1.23)fP g ^ g�h ) fP h (1.24)1.3.2 Parallel Computation ModelsThe most studied model of a parallel architecture is the Parallel Random AccessMachine (PRAM). A PRAM consists of a set of processing elements (processors)each with access to their private memories and to a shared memory. A computationalstep of a PRAM algorithm consists of the following sequence of operations performedby each processor: read a single data value from either the shared or private memory,perform a single operation, and write a value to either memory. There are di�erentvariations on the PRAM model that specify whether more than one processor canread/write to the same memory location in the same step and how conicts areresolved. In this work we will only study the CREW PRAM, that permits morethan one processor to read from the same memory location in a step, but requiresthat all writes be to separate locations. 17
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The PRAM models are idealized machines in the sense that they ignore thefact that most parallel architectures do not have a shared memory, but insteadrely on communication channels between processors with private memory. Such anarchitecture can be viewed abstractly as a graph where the nodes are the processingelements and the edges are the communication channels. Several properties of thisgraph are important in characterizing the architecture:Diameter the maximal distance between two nodes. A measure of how many\hops" a message may have to endure.Degree the maximal number of edges incident to a node. The lower the degree theeasier it is to physically realize the design in hardware.There are many di�erent proposals for topologies for parallel architectures,among them are (from [McC91]):Topology Degree Diameter1D array (ring) 2 p=2Shu�e-exchange 3 2 � log pCube-connected-cycles 3 (5=2) � log p2D mesh of trees 3 2 � log p3D mesh of trees 3 2 � log p2D array (toroidal) 4 ppButtery (wrapped) 4 2 � log pde Bruin 4 log p3D array (toroidal) 6 3ppPyramid 9 log pHypercube log p log pPRAM p 118
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Note that we can view a PRAM as the complete p-graph. The literaturecontains many results that show that one architecture can simulate another witha slowdown described by a function f ; that is, an algorithm that runs in time P:non the second architecture runs in time f:n � P:n under the simulation on the �rstarchitecture. If fO one then we say that the �rst architecture is at least as powerfulas the second; thus, we can describe a partial order that ranks the computationalpower of the di�erent architectures.A realistic complexity model for parallel algorithms needs to consider thecommunication costs that are inherent in most architectures. One such proposalis LogP [CKP+93], that models an architecture abstractly with four parameters tospecify: the computing bandwidth, the communication bandwidth, the communi-cation delay, and the e�ciency of coupling communication and computation. Forour purposes such a model is too complex, since we want to avoid working witharchitectures at this level of detail.

19
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Chapter 2
Powerlists

In this chapter we present the PowerList data structure and its theory [Mis94] illus-trated with examples of parallel algorithms expressed as functions over PowerList.We provide a cost calculus that allows us to quantify the time that implementationsof the PowerList notation may take on particular parallel architectures and show ane�cient mapping of the PowerList operators to hypercubes [Kor94, Kor95]. Finally,we study how di�erent sorting algorithms can be expressed in the PowerList notation,focusing on a derivation of the odd-even transposition sort [Kor97a, Kor97c].2.1 IntroductionFunctional programming languages typically employ lists where the basic construc-tors (adding or removing a single element) allow for sequential processing of the listelements. The PowerList notation [Mis94] uses balanced division of lists in order toallow for parallel processing.A PowerList is a linear data structure whose elements are all of the same datatype. The length of a PowerList is always a power of two. The smallest PowerListhas length one; it is called a singleton and is written as hai where a is the element20
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of the singleton. PowerLists of equal length with elements from the same data typeare called similar. Two similar PowerLists, p; q, can be combined into a PowerList oftwice their lengths in two di�erent ways:� p j q (pronounced p \tie" q) is the PowerList that consists of the elements of p(in order) followed by the elements of q (also in order);� p ./ q (pronounced p \zip" q) is the PowerList that consists of alternatelytaking elements from p and q (in order) starting with p.We introduce the type-function PowerList : Type� Nat �! Type that takestwo arguments, a type (say X) and a natural number (say k) and returns the typeof all PowerLists with elements of type X and length equal to 2k. for example,PowerList.Nat.2 is the type of all PowerLists of length 22 containing natural numbersas elements. The statement that p and q are similar is equivalent to saying that pand q both belong to PowerList:X:n for some X and n. The types of the PowerListconstructors are as follows: h i : X �! PowerList:X:0 (2.1)j : PowerList:X:n� PowerList:X:n �! PowerList:X:(n+ 1) (2.2)./ : PowerList:X:n� PowerList:X:n �! PowerList:X:(n+ 1) (2.3)The functions length : PowerList:X:n �! Pos and loglen : PowerList:X:n �! Nat arede�ned by (8p : p 2 PowerList:X:n : length:p = 2n) (2.4)(8p : p 2 PowerList:X:n : loglen:p = n) (2.5)The following axioms de�ne the PowerList algebra:loglen:p > 0 ) (9u; v : p = u j v) (2.6)loglen:p > 0 ) (9u; v :: p = u ./ v) (2.7)21
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hai = hbi � a = b (2.8)p j q = u j v � p = u ^ q = v (2.9)p ./ q = u ./ v � p = u ^ q = v (2.10)hai j hbi = hai ./ hbi (2.11)(p j q) ./ (u j v) = (p ./ u) j (q ./ v) (2.12)We often refer to Axiom (2.12) by saying that zip and tie commute (Richard Bird[Bir89] calls this property abide).There is no way to directly address a particular element of a PowerList. Theonly way to access the elements of a PowerList is to break it down using ./ andj as deconstructors, i.e., by using Axioms (2.6) and (2.7). For expository reasonswe overload the singleton notation to write concrete PowerLists in examples, e.g.h0 1 2 3i is the PowerList containing the �rst four natural numbers. This notationis not part of the theory itself and will not be used in derivations.Let 
 : Y � Y �! Y be a binary operator, de�ned on the scalar typeY. We lift 
 to operate on PowerList.Y in an \element-wise" fashion, i.e.,
 : PowerList:Y:n� PowerList:Y:n �! PowerList:Y:n, with the following lawshai 
 hbi = ha 
 bi (2.13)(p j q)
 (u j v) = (p
 u) j (q 
 v) (2.14)(p ./ q)
 (u ./ v) = (p
 u) ./ (q 
 v) (2.15)Note that only one of (2.14) and (2.15) is needed, as one can be proven by structuralinduction from the other. Note also the similarity between (2.12) and (2.14) (or(2.15)); we often refer to (2.14) (and (2.15)) by saying that j and 
 (or ./ and 
)commute. As an example we look at addition over natural numbers:h4 7 9 3i+ h2 5 8 4i = h6 12 17 7iRelations over scalar types are lifted in a similar fashion, to relations onPowerLists of the same type. Let 4 be a relation de�ned on a data type X, i.e.,22
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4 : X� X �! Bool, and let p; q; u; v 2 PowerList:X:n and x; y 2 X , we de�ne thelifting of 4 by: hx i 4 hyi � x 4 y (2.16)(p ./ q) 4 (u ./ v) � (p 4 u) ^ (q 4 v) (2.17)i.e., two PowerLists are related by4 i� all elements are related pairwise. This extendsAxiom (2.10) from the PowerList algebra, which de�nes = on PowerLists constructedusing ./ in this way. It is worth noting that the terms p 6= q and :(p = q) are notnecessarily identical for non-singleton PowerLists p and q. We could have used j inde�ning 4 over PowerLists, since a simple consequence of (2.17) is(p j q) 4 (u j v) � (p 4 u) ^ (q 4 v) (2.18)Functions on PowerLists are de�ned using pattern matching known from func-tional programming languages such as ML [MTH90] and MirandaTM [Tur86]. It fol-lows from the PowerList axioms that a singleton can be deconstructed uniquely, andsimilarly that a non-singleton PowerList can be deconstructed uniquely using both ./and j. We can de�ne the permutation function rev : PowerList:X:n �! PowerList:X:nthat returns the PowerList where the order of the elements of the argument PowerListare reversed: rev:hai = hai (2.19)rev:(u j v) = rev:v j rev:u (2.20)rev can also be de�ned using zip as the deconstructor:rev:(u ./ v) = rev:v ./ rev:u (2.21)It is a simple exercise to show that rev is an involution, i.e., its own inverse. As anexample of applying rev we have:rev:h0 1 2 3i = h3 2 1 0i23
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Next, we de�ne the function sum : PowerList:Y:n �! Y that computes the sum ofthe elements of a PowerList. We assume that the addition operator � : Y � Y �! Yis associative: sum:hai = a (2.22)sum:(p j q) = sum:p � sum:q (2.23)The computations of sum have the shapes of balanced binary trees. The functionsum is an example of a reduction. In general, we de�ne the reduction functionreduce : (Y � Y �! Y)� PowerList:Y:n �! PowerList:Y:n by:reduce:�:hai = a (2.24)reduce:�:(p j q) = reduce:�:p � reduce:�:q (2.25)It follows by instantiation that sum = reduce:� .The function reduce is an example of a higher order function, i.e., a functionthat takes a function as an argument. Another example of a higher order PowerListfunction is: map : (X �! Z)� PowerList:X:n �! PowerList:Z:n that takes a functionand a PowerList and applies the function to each element of the PowerList. We de�nemap by: map:f:hai = hf.ai (2.26)map:f:(p ./ q) = map:f:p ./ map:f:q (2.27)as an example we apply the function abs, that returns the absolute value of aninteger, to the PowerList h17 -3 0 -2i:map:abs:h17 -3 0 -2i = h17 3 0 2iNote that for scalar functions, like abs, we could have lifted its de�nition to operateon PowerList like we did for scalar binary operators in (2.13), (2.14) and (2.15).Such a notation is simpler than using map and will be used in the following whereapplicable. 24
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2.1.1 Induction Principle for PowerListsFunctions over PowerLists are de�ned by structural induction. In proving propertiesof PowerLists and PowerList functions we exploit their structural de�nition. Let� : PowerList:X:n �! Bool be a predicate whose truth is to be established for allPowerList over X. We can establish � by the following induction principle:(8x : x 2 X : �:hx i)^ ( (8p; q; n : p; q 2 PowerList:X:n ^ n 2 Nat : �:p ^ �:q ) �:(p j q))_ (8p; q; n : p; q 2 PowerList:X:n ^ n 2 Nat : �:p ^ �:q ) �:(p ./ q)) )) (8p; n : p 2 PowerList:X:n ^ n 2 Nat : �:p)As an example of a proof by structural induction we prove the followingcommutative property between map and rev:rev:(map:f:p) = map:f:(rev:p) (2.28)Proof of (2.28). Base case:rev:(map:f:hai)= f map (2.26) grev:hf.ai= f rev (2.19) ghf.ai= f map (2.26) gmap:f:hai= f rev (2.19) gmap:f:(rev:hai)Inductive step:rev:(map:f:(p ./ q))= f map (2.27) g 25
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rev:(map:f:p ./ map:f:q)= f rev (2.21) grev:(map:f:q) ./ rev:(map:f:p)= f induction (2.28) gmap:f:(rev:q) ./ map:f:(rev:p)= f map (2.27) gmap:f:(rev:q ./ rev:p)= f rev (2.21) gmap:f:(rev:(p ./ q))End of Proof2.1.2 Data Movement and Permutation FunctionsIn the following we de�ne the functions rr, rl and inv that permute the elementsof a PowerList, like rev de�ned above. We also de�ne the operators ! and  thatperform data movements on PowerLists that are closely related to the permutationfunctions rr and rl. These functions are fundamental building blocks for PowerListfunctions.The operators ! (\right-shift") and  (\left-shift") have the type:! : X� PowerList:X:n �! PowerList:X:n : PowerList:X:n� X �! PowerList:X:nThey can be de�ned as follows [Ada94]1:x!hai = hx i (2.29)x!(p ./ q) = x!q ./ p (2.30)1The operators ! and  have a binding power that is greater than that of the other binaryoperators, with the exception of function application (in�x dot). See Section (1.2.2) for the completetable of binding powers. 26
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hai x = hx i (2.31)(p ./ q) x = q ./ p x (2.32)The operator ! takes a scalar and a PowerList as arguments, and returns thePowerList obtained by shifting all the elements of the supplied list one position tothe right, and inserting the scalar as the leftmost element. Note that the rightmostelement of the supplied PowerList is lost by this operation. The dual operator  performs a similar operation, except that the PowerList is shifted to the left and thescalar is inserted as the rightmost element. As examples of applying these operatorswe have: 0!h1 2 3 4i = h0 1 2 3i h0 1 2 3i 4 = h1 2 3 4iThe functions �rst : PowerList:X:n �! X and last : PowerList:X:n �! X return the�rst and last element of a PowerList, respectively:�rst:hai = a (2.33)�rst:(p j q) = �rst:p (2.34)last:hai = a (2.35)last:(p j q) = last:q (2.36)We use the following shorthand for �rst and last when convenient: p = �rst:p and !p = last:pUsing �rst and last we can provide an alternative de�nition of ! and  using j as the constructor (a proof of (2.37) can be found in [Ada94]; the proof of(2.38) is dual): a!(p j q) = a!p j !p!q (2.37)(p j q) a = p  q j q a (2.38)27
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The function rr : PowerList:X:n �! PowerList:X:n rotates the elements of aPowerList one position to the right, wrapping the rightmost element around; itsinverse rl : PowerList:X:n �! PowerList:X:n rotates the elements of a PowerList oneposition to the left, wrapping the leftmost element around.rr:hai = hai (2.39)rr:(p ./ q) = rr:q ./ p (2.40)rl:hai = hai (2.41)rl:(p ./ q) = q ./ rl:p (2.42)As examples we haverr:h0 1 2 3i = h3 0 1 2i and rl:h0 1 2 3i = h1 2 3 0iFrom the de�nitions of rr and rl it is possible to prove the following identities:rr:(p j q) = !q!p j !p!q (2.43)rl:(p j q) = p  q j q  p (2.44)Finally, we de�ne a permutation function inv : PowerList:X:n �! PowerList:X:n, thatwe will use in Chapter 4 to prove isomorphisms between interconnection networks.inv:hai = hai (2.45)inv:(p j q) = inv:p ./ inv:q (2.46)It is simple to show that inv:(p ./ q) = inv:p j inv:q (2.47)The functions rev, rr, rl and inv are permutation functions, i.e., they rear-range the elements of a PowerList. Permutation functions have inverses and enjoythe property that they distribute over scalar operators, as stated by the followingLemma: 28
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Lemma 3 Let X be a scalar type, �: X �! X be a unary, pre�x operator,
 : X� X �! X be a binary operator, 4 : X� X �! Bool be a binary relation, andf : PowerList:X:n �! PowerList:X:n be a permutation function, then:f:(�p) = �f:p (2.48)f:(p 
 q) = f:p 
 f:q (2.49)p 4 q � f:p 4 f:q (2.50)This lemma is di�cult to prove within the PowerList theory, without introducingexplicit indices2. Informally, the lemma holds since scalar operators and relations areapplied to elements, regardless of their position in the PowerList; it does not matterwhether this application takes place before or after the elements are permuted. Weomit the proof of the Lemma, since it is not very interesting and involves de�ninga new notation for index-based reasoning.2.2 HypercubesLike PowerLists, hypercubes only come in sizes that are powers of two. They alsoshare the property that two hypercubes of the same size can be combined into asingle hypercube of twice the size. Many commercial supercomputer architecturesare based on the hypercube, e.g. NCube's Mediacube series.An n-dimensional hypercube can be viewed as a graph with 2n nodes, eachuniquely labeled with an n-bit string. Two nodes are connected by an edge if theirlabels di�er in exactly one position, so each node has n neighbors. We note thatthe diameter (maximum distance between any two nodes) is n.The hypercube topology is very versatile, and many topologies can be em-bedded in the hypercube; Leighton [Lei92] shows a number of these embeddings.2For a speci�c permutation function it is straightforward to establish that the the lemma applies.For instance, we proved (2.48) for rev by proving (2.28).29
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We will consider a mapping of a PowerList function to a hypercube to be e�-cient if each parallel step of a corresponding mapping to a CREW PRAM is equiv-alent to a constant number of basic operations and communications with neighborson the hypercube.Two hypercubes, each of size 2n, can be combined and labeled in n + 1di�erent ways, in an \orderly" fashion, to form a hypercube of size 2n+1, one foreach position: connect the nodes from the two cubes with the same label by anedge, and relabel each node to an n+ 1 bit index by shifting the bits from a �xedposition one position to the left. The nodes from the �rst cube all obtain a zero bitin the �xed position, whereas the nodes from the second cube obtain a one bit.There is a strong connection between PowerLists and hypercubes: if we labeleach element of a PowerList of length 2n with a bit string (of length n), representingthe position of the element in the PowerList, this element can be mapped to thenode with the same label on a hypercube of size 2n. We refer to this representationas the standard encoding. By the construction above, it follows by induction thatthe zip (tie) of the representation of two PowerLists can be implemented e�cientlyby combining the representing cubes in the low (high) order bit.2.3 A Cost Calculus for PowerListsIn this section we will present a cost calculus for the PowerList algebra, building onthe general framework that we developed in Chapter 1. This approach is somewhatnaive, since we do not provide an operational model of the parallel architectures.This means that we can only state, but not prove the more involved results.By cost we mean the time it takes to evaluate a function on a particulararchitecture. We do this by introducing a function for the architectures we study:P for PRAM, H for hypercube. Each of these functions is of the type(PowerList:X �! PowerList:X)� Nat �! Real30
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They return the time it takes to evaluate the given function on an argument PowerListwhose loglen is equal to the second argument on the architecture. As an exampleP:rev:n is the time it takes on a PRAM to reverse a PowerList whose loglen is nusing the function rev.To simplify the calculus we assume that each architecture has enough pro-cessors to evaluate the function on the given argument. This is done so we can focuson the idealized time it takes to evaluate the function. In a more realistic scenariowhere there are not enough processors, each processor acts as a PRAM simulationon the data elements assigned to it. Since the PRAM is the most powerful parallelmodel we consider this does not invalidate any claim we make.A hypercube implementation can be simulated with a constant factor slow-down on a PRAM, stated formally by:(8f :: P:f O H:f)2.3.1 Basic FunctionsFirst, we present the basic functions that will be used in evaluating the runningtime of algorithms, along with the complexity we assume that they have on the twoarchitectures: swaptie:(p j q) = q j p (2.51)swapzip:(p ./ q) = q ./ p (2.52)The two swap functions correspond to very simple data movements. On aPRAM these operations can clearly be performed in a constant number of steps.On a hypercube this is not so obvious. Under the standard encoding each element ofa PowerList is mapped to the processor with the same binary index as the element.swaptie correspond to exchanging values between neighbors in the highest dimension;similarly, swapzip corresponds to an exchange in the lowest dimension. Hence it is31
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clear that this operation can be performed in constant time. In summary we have:P:swaptieO one (2.53)H:swaptieO one (2.54)P:swapzipO one (2.55)H:swapzipO one (2.56)As an example we analyze the running time of the function sum as de�ned by (2.23):(�n :: H:sum:(n+ 1))= f De�nition of sum (2.23) g(�n :: H:sum:n+H:0 +0 :n). f By Lemma 2 (1.13) there exists a c g(�n :: H:sum:n+ c)O f Solve recurrence, Lemma 2 (1.11) gidSince we established that H:swaptie = P:swaptie we can conclude that P:sum O id.Since the second arguments of P and H are the logarithmic length of the PowerList,the above results corresponds to a logarithmic execution time.Let us turn to analyzing the reverse function rev, de�ned by (2.19) and (2.20)in Section 2.1.2: we get:(�n :: H:rev:(n+ 1))= f De�nition of rev g(�n :: H:rev:n+H:swaptie:n). f By Lemma 2 (1.13) there exists a c g(�n :: H:rev:n+ c)O f Solve recurrence gid 32
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The above result is \tight" for the standard encoding on the hypercube. An elementmoves to a processor whose index is the inverted bit string of the index of theprocessor where it was located. On a hypercube this means that the element has totraverse all dimensions, i.e., idOH:rev .The recursive de�nition of rev corresponds closely to how the function be-haves on a hypercube, but on a PRAM all but one of these exchanges are superuous,since the rev operation can be achieved by performing the movement from the sourceto the the destination in one step. Note that in the case of sum the elements of thePowerList are changed (i.e., added together) in each step and the steps cannot becollapsed. The above derivation is still correct, i.e., P:rev O id, but the bound forrev is not tight. By doing a slightly di�erent analysis for the PRAM, we get:(�n :: P:rev:(n+ 1))= f De�nition of rev and property of PRAM g(�n :: P:rev:n)O f Solve recurrence goneA similar situation arises when we study the operator ! (and dually  )de�ned in Section 2.1.2 by (2.29) and (2.30). On a hypercube the operation corre-sponds to moving an element at node i to node i+ 1 if we interpret the identity ofnodes as natural numbers. From the calculus of binary numbers it is well knownthat the Hamming distance between 2n and 2n � 1 is n+ 1. This means some ele-ments in the PowerList need to traverse all dimensions of the hypercube under the! operation. Through a similar derivation as given for rev we getH:! O idAs was the case for rev, we can prove thatP:! O one33



www.manaraa.com

2.4 Pre�x SumThe pre�x sum algorithm is one of the most fundamental parallel algorithms. It isoften used as a building block for other parallel algorithms [Ble89, Ble90, Ble93].We will see its use in the speci�cation of the Carry lookahead adder in Chapter 3.Given a PowerList of scalars and an associative, binary operator � on these scalars,the pre�x sum ps returns a PowerList of the same length where each element is theresult of applying the operator on the elements up to and including the elementin that position in the original PowerList. For example, if � is addition over theintegers we have: ps:h3 2 0 5i = h3 5 5 10iMore formally, the pre�x sum of a PowerList p, where p 2 PowerList:Y:n andthe data type Y has the property that (Y;+; 0) is a monoid, can be de�ned [Mis94]as the (unique) solution to the equation (in u):u = (0!u) � p (2.57)A proof that (2.57) has a unique solution can be found in [Ada94].We de�ne the function ps : PowerList:Y:n �! PowerList:Y:n to realize a wellknown algorithm for computing the pre�x sum due to Ladner and Fischer [LF80].This algorithm has roots in an algorithm presented by Ofman [Ofm63] and laterimplemented on a perfect shu�e network by Stone [Sto71]. Misra [Mis94] derivedthe algorithm for PowerLists; we show a slightly di�erent derivation below:u ./ v= f de�ne u ./ v := ps:(p ./ q) gps:(p ./ q)= f de�ning equation for ps (2.57) g0!ps:(p ./ q) � p ./ q= f de�nition of u; v g 34
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0!(u ./ v) � p ./ q= f ! (2.30) g0!v ./ u � p ./ q= f ./;� (2.15) g(0!v � p) ./ (u � q)Summarizing:u ./ v = 0!v � p ./ u � q� f Axiom (2.10) gu = 0!v � p ^ v = u � q� f solving for v gu = 0!v � p ^ v = (0!v � p) � q� f � is associative gu = 0!v � p ^ v = 0!v � (p � q)� f de�ning equation for ps (2.57) gu = 0!v � p ^ v = ps:(p � q)� f solving for u gu = 0!ps:(p � q) � p ^ v = ps:(p � q)� f de�nition of u; v and Axiom (2.10) gps:(p ./ q) = 0!ps:(p � q) � p ./ ps:(p � q)Above we have derived the following algorithm for computing the pre�x sum:ps:hai = hai (2.58)ps:(p ./ q) = (0!t � p) ./ t; where t = ps:(p � q) (2.59)2.4.1 A Hypercube Algorithm for Pre�x SumLadner and Fischer's algorithm is not e�cient when mapped onto hypercubes usingthe standard encoding of PowerLists, since the ! operation cannot be performede�ciently under this encoding. As we discovered in Section 2.3, adjacent elements35
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of the PowerList can be as far apart on the hypercube as its diameter. We have(�n :: n2) O H:ps (2.60)We will address the general problem of mapping operators like ! e�ciently ontohypercubes in Section 2.5, aiming for a logarithmic execution time.As noted in Section 2.3 both zip and tie can be performed e�ciently on ahypercube under the standard encoding. Thus we can obtain an e�cient algorithmby eliminating the ! operation from (2.59).We generalize the de�ning equation for pre�x sum (2.57) to the function cube ps intwo arguments:cube ps : PowerList:Y:n� PowerList:Y:n �! PowerList:Y:nde�ned by the equation: cube ps:p:q = 0!ps:p � q (2.61)It follows from the de�ning equation for ps:r (2.57) that:ps:r = cube ps:r:rWe explore the de�nition of cube ps:cube ps:(p ./ q):(u ./ v)= f de�ning equation for cube ps (2.61) g0!ps:(p ./ q) � (u ./ v)= f Ladner & Fischer (2.59), where t = ps:(p � q) g0!((0!t � p) ./ t) � (u ./ v)= f de�nition of ! (2.30) g0!t ./ (0!t � p) � (u ./ v)= f commutativity �; ./ (2.15) g 36
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0!t � u ./ (0!t � p) � v= f associativity of � g0!t � u ./ 0!t � (p � v)= f t = ps:(p � q) g0!ps:(p � q) � u ./ 0!ps:(p � q) � (p � v)= f de�nition of cube ps gcube ps:(p � q):u ./ cube ps:(p � q):(p � v)This gives the following recursive de�nition of cube ps:cube ps:hai:hbi = hbicube ps:(p ./ q):(u ./ v) = cube ps:(p � q):u ./ cube ps:(p � q):(p � v)By using two variables the ! operator has disappeared; thus the algorithm can beimplemented e�ciently on the hypercube. We haveH:cube ps O id (2.62)through a similar derivation as was performed for sum in Section 2.3. The algorithmcube ps is well known in the literature [MP89, J�aJ92], and is considered as part of thefolklore; its close connection to the algorithm by Ladner and Fischer is interesting.2.5 Mapping PowerLists Onto HypercubesSo far we have studied the standard encoding of PowerLists onto hypercubes. Wesaw that this encoding poses a problem with certain operators on the hypercube,such as the ! operator and the reverse function rev. In this section we introducethe reected Gray coding. We utilize this encoding as a domain transformation likethe Fourier Transform, transforming the operands into a domain where operationslike ! can be performed e�ciently. We then study how a class of functions usingthe fundamental operators can be implemented e�ciently under this encoding.37
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The Gray coding was invented by Dr. Frank Gray to lower the data losswhen transmitting signals across noisy wires. The coding was patented by hisemployer, Bell Labs, in 1953 [Gra53]. The reected Gray coding of a PowerListpermutes the elements in such a way that neighboring elements in the originalPowerList are placed in positions of the coded PowerList whose indices written asa binary string only di�er in one position. We de�ne the permutation functiongray : PowerList:X:n �! PowerList:X:n as a realization of the reected Gray codegray:hai = hai (2.63)gray:(u j v) = gray:u j gray:(rev:v) (2.64)As an example we have:gray:ha b c d e f g hi = ha b d c h g e f iThe time complexity of gray on a hypercube is:H:gray O id (2.65)Note that this property does not follow directly from (2.64); more properties of thehypercube are necessary to establish it3. From this point onward we will not be ableto prove the stated complexity results within the PowerList model, they should onlybe taken as conjectures.An interesting property of gray isgray:((p ./ u) ./ (q ./ v)) = (gray:p ./ v) ./ (gray:q ./ u) (2.66)The inverse function of gray is yarg, de�ned by:yarg:hai = hai (2.67)yarg:(u j v) = yarg:u j rev:(yarg:v) (2.68)3The proof of a more general complexity result, presented in a di�erent formalism, can be foundin [JH95]. 38
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2.5.1 The Gray Coded OperatorsNext we study how operators in the PowerList notation can be implemented in theGray coded domain. For a binary operator y and unary operator \, this amounts tode�ning the Gray coded counterparts: yG and \G with the properties:gray:u yG gray:v = gray:(u y v) (2.69)\G(gray:u) = gray:(\u) (2.70)Scalar OperatorsThe simplest operator to study is a scalar operator �. We de�ne �G, the Graycoded version of � by: gray:u �G gray:v = gray:(u � v) (2.71)Since gray is a permutation function, we have by Lemma 3gray:(u � v) = gray:u � gray:v (2.72)There is no point in introducing a special �G operator since �G = � from (2.71)and (2.72).The ./ operatorIn order to implement ./ under the Gray coded mapping, we de�ne the operator./G satisfying: gray:u ./G gray:v = gray:(u ./ v) (2.73)By de�ning a permutation function cube even, that is e�cient to implement on ahypercube, with the propertygray:(u ./ v) = cube even:(gray:u ./ gray:v) (2.74)39
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the complexity of ./G is the same as that of ./. Note that it is a simple consequenceof (2.73), (2.74) and the existence of yarg that:u ./G v = cube even:(u ./ v) (2.75)We proceed by exploring what properties are needed of cube even in order to provethe inductive step for (2.73).cube even:(gray:(u j v) ./ gray:(p j q))= f de�nition of gray (2.74) gcube even:((gray:u j gray:(rev:v)) ./ (gray:p j gray:(rev:q)))= f commutativity ./; j (2.12) gcube even:((gray:u ./ gray:p) j (gray:(rev:v) ./ gray:(rev:q)))= f de�ne cube even:(u j v) = cube even:u j cube odd:v, see below gcube even:(gray:u ./ gray:p) j cube odd:(gray:(rev:v) ./ gray:(rev:q))= f induction, see (2.76) and (2.77) below ggray:(u ./ p) j gray:(rev:q ./ rev:v)= f property of rev(2.21) ggray:(u ./ p) j gray:(rev:(v ./ q))= f de�nition of gray (2.64) ggray:((u ./ p) j (v ./ q))= f commutativity Axiom (2.12) ./; j ggray:((u j v) ./ (p j q))Two equations were left unproven in the above:cube even:(u j v) = cube even:u j cube odd:v (2.76)cube odd:(gray:u ./ gray:v) = gray:(v ./ u) (2.77)We use (2.76) as the de�nition of cube even, along with the two base cases:cube even:hai = hai (2.78)cube even:(hai j hbi) = hai j hbi (2.79)40
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The proof of (2.77) is similar to the inductive proof given for (2.73), yieldingthe following de�nition of cube odd:cube odd:hai = hai (2.80)cube odd:(hai j hbi) = hbi j hai (2.81)cube odd:((u j v) j (p j q)) = cube odd:(u j v) j cube even:(p j q) (2.82)cube even:(u ./ v) is the permutation on u ./ v that swaps each element of u withindex (in u) of odd parity with the element in v with the same index. The twoPowerLists are then zipped back together. If the list u ./ v is encoded directly onthe hypercube, this operation can be performed e�ciently by swapping elementsamong the nodes with this property, i.e.H:cube even O one ^ H:cube odd O oneIt is a simple exercise to show that both cube even and cube odd are theirown inverses (involutions).The j operatorNext we explore an e�cient implementation of j under the Gray coding. Just as weintroduced ./G to satisfy commuting property (2.69), we introduce jG:gray:p jG gray:q = gray:(p j q) (2.83)and continue by exploring this de�nitionp jG q= f gray and yarg are inverses ggray:(yarg:p) jG gray:(yarg:q)= f jG (2.83) ggray:(yarg:p j yarg:q) 41
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= f gray (2.64) ggray:(yarg:p) j gray:(rev:(yarg:q))= f gray and yarg are inverses gp j gray:(rev:(yarg:q))We continue by exploring the right hand sidegray:(rev:(yarg:(u j v)))= f yarg (2.68) ggray:(rev:(yarg:u j rev:yarg:v))= f rev (2.20) is an involution ggray:(yarg:v j rev:(yarg:u))= f gray (2.64) ggray:(yarg:v) j gray:(rev:(rev:(yarg:u)))= f gray, yarg are inverses; rev is an involution gv j gray:(yarg:u)= f gray and yarg are inverses gu j vPutting the above together we de�ne the permutation function ip:ip:hai = hai (2.84)ip:(hai j hbi) = hai j hbi (2.85)ip:((p j q) j (u j v)) = (p j q) j (v j u) (2.86)with the property ip:(p j q) = p jG q (2.87)ip has an e�cient implementation on a hypercube: nodes with a one in the highestbit of the label exchange their value with their neighbor in the next to highestdimension: H:ip O one42
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The ! operatorThe ! operator is de�ned in terms of the fundamental operator ./. We de�ne theGray coded equivalent in terms of the Gray coded ./G operator:a G!hbi = hai (2.88)a G! (u ./G v) = a G! v ./G u (2.89)This operator can be implemented in constant time on the hypercube, since neigh-boring elements of the PowerList are neighbors on the hypercube under the Graycoded mapping: H: G! O oneNote that this property does not follow directly from (2.89), since a proof thatutilizes adjacency is needed; such a proof seems to lie outside of the PowerListtheory.The operator G! satis�es the commuting property in (2.70), i.e.a G! gray:u = gray:(a!u) (2.90)Proof of (2.90), base case omitted. Inductive step:a G! gray:(p ./ q)= f ./G (2.73) ga G! (gray:p ./G gray:q)= f G! (2.89) ga G! gray:q ./G gray:p= f induction (2.90) ggray:(a!q) ./G gray:p= f ./G (2.73) ggray:(a!q ./ p)= f ! (2.30) ggray:(a!(p ./ q)) 43
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End of ProofWe have shown that under Gray coding the fundamental operators and somederived operators have e�cient implementations on the hypercube. From the aboveit does not follow that all PowerList functions can be implemented as e�ciently ona hypercube as on a PRAM. The Gray coding satis�es (2.65) H:grayO id, but aPowerList function that takes less time on a CREW PRAM, like the function !,is not implemented e�ciently due to the overhead introduced by the Gray coding.However, as shown below, when ! is used in Ladner and Fischer's pre�x sumalgorithm, the Gray coded implementation on a hypercube is e�cient.2.5.2 Ladner and Fischer's Algorithm RevisitedAs we observed, properties from the original theory carry over into the Gray codeddomain. As an example we revisit the Ladner and Fischer algorithm for pre�x sum.Using the Gray coded operators we can de�ne the Gray coded version of Ladnerand Fischer's algorithm:psg:hai = hai (2.91)psg:(p ./G q) = 0!r � p ./G r where r = psg:(p � q) (2.92)psg satis�es the commuting property:psg:(gray:p) = gray:(ps:p) (2.93)Proof Induction, base case is omitted:psg:(gray:(p ./ q))= f ./G (2.73) gpsg:(gray:p ./G gray:q)= f psg (2.92) g0 G! psg:(gray:p � gray:q) � gray:p ./G psg:(gray:p � gray:q)44
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= f � is scalar (2.15) g0 G! psg:(gray:(p � q)) � gray:p ./G psg:(gray:(p � q))= f Induction hypothesis (2.93) g0 G! gray:(ps:(p � q)) � gray:p ./G gray:(ps:(p � q))= f G! (2.89) ggray:(0! ps:(p � q)) � gray:p ./G gray:(ps:(p � q))= f � is scalar, gray is a permutation function, Lemma 3 (2.49) ggray:(0! ps:(p � q) � p) ./G gray:(ps:(p � q))= f ./G and gray (2.73) ggray:(0! ps:(p � q) � p ./ ps:(p � q))= f ps (2.59) ggray:(ps:(p ./ q))End of ProofSince each of the Gray coded operators have e�cient implementations, we have ob-tained an e�cient implementation of Ladner and Fischer's algorithm for hypercubicarchitectures.2.6 Fast Fourier TransformIn this section we present the Discrete Fast Fourier Transform algorithm as it wasderived for PowerList by Misra [Mis94]. The succinctness of the PowerList descriptionillustrates the expressive power of having both ./ and j in the PowerList notation.The Discrete Fourier Transform is an important tool used in many scienti�capplications, especially in digital signal processing. It can be used for time seriesanalysis, convolutions and to solve partial di�erential equations. The transformmaps a sample from a cycle of data points of a periodic signal onto a frequencyspectrum representation containing the same number of points.45
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The Fast Fourier Transform is a method to compute the Discrete FourierTransform made popular by Cooley & Tukey [CT65]. Misra [Mis94] derived this al-gorithm from its de�nition. The function �t : PowerList:n:Com �! PowerList:n:Comcan be written as: �t:hai = hai (2.94)�t:(p ./ q) = (r + u � s) j (r � u � s) (2.95)where r = �t:ps = �t:qu = powers:z:pz = root:(length:(p ./ q))where root : Nat �! Com applied to n returns the nth root of unity:root:n = e 2���p�1n (2.96)and the function powers : Com� PowerList:X:n �! PowerList:Com:n is de�ned bypowers:x:hai = hx0i (2.97)powers:x:(p ./ q) = powers:x2:p ./ map:[x�]:(powers:x2:q)) (2.98)where [x�] : Com �! Com is the scalar function that multiplies its argument by x:[x�]:y = x � y (2.99)The function powers:x:p returns a PowerList of the same length as p containing thepowers of x from 0 up to the length of p, for example:powers:3:ha b c di = h1 3 9 27iAs an example of applying �t we have:�t:hp�1 �p�1 2 1+p�1 i = h 3+p�1 0 1+p�1 �4+2�p�1 i46



www.manaraa.com

2.7 SortingThis section focuses on the derivation of the odd-even transposition sort as a PowerListfunction. It turns out that this algorithm is di�cult to express in PowerList since itdoes not have a simple recursive description. We start the section by presenting twosorting networks, batcher and bitonic, due to Batcher [Bat68] that Misra [Mis94]gave elegant PowerList descriptions of. These descriptions are included to show thatthe PowerList can be used e�ectively and elegantly to specify sorting algorithms.We study sorting over a totally ordered domain (M;�). For speci�cationpurposes we assume thatM contains a minimum element ? and a maximum element> and that the symmetric and associative operators " (for maximum) and # (forminimum) are de�ned by:(8x; y : x; y 2 M : x " y = y � x � y) (2.100)(8x; y : x; y 2 M : x # y = y � y � x) (2.101)(8x : x 2 M : ? � x ^ x � > ) (2.102)In [Mis94] Misra presented two sorting networks due to Batcher [Bat68], theBitonic sort and the Batcher merge. We present these networks below, using aslightly modi�ed syntax. First, we present the Batcher sortbatcher : PowerList:M:n �! PowerList:M:nde�ned in terms of the auxiliary operators o and l :batcher:hx i = hx i (2.103)batcher:(p ./ q) = batcher:p o batcher:q (2.104)hx i o hyi = hx i l hyi (2.105)(p ./ q) o (u ./ v) = (p o v) l (q ou) (2.106)p l q = (p # q) ./ (p " q) (2.107)47
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The Bitonic sort bitonic : PowerList:M:n �! PowerList:M:nis de�ned by: bitonic:hx i = hx i (2.108)bitonic:(p ./ q) = bitonic merge:(bitonic:p j rev:(bitonic:q)) (2.109)bitonic merge:hx i = hx i (2.110)bitonic merge:(p ./ q) = bitonic merge:p l bitonic merge:q (2.111)To prove the correctness of these networks, Misra used the 0-1 principle,which states that a compare-and-swap sorting algorithm is correct i� it sorts all in-puts consisting of 0s and 1s. The 0-1 principle is often attributed to Knuth [Knu73],where Batcher's networks are also presented.2.7.1 Odd-even Sort in PowerListsWe will study the odd-even sort which can be considered a parallel version of bubblesort ; it is simple to implement and to explain operationally, yet it is ine�cient andsomewhat tedious to prove correct4. The algorithm consists of a sequence of phases,where each phase consists of an \even" step followed by an \odd" step. It is oftendescribed operationally as follows [Lei92]:\At odd steps, we compare the contents of cells 1 and 2, 3 and 4, etc.,exchanging values if necessary so that the smaller value ends up in theleftmost cell. At even steps, we perform the same operation for cells 2and 3, 4 and 5, etc."4As a parallel sorting technique the odd-even sort is well established in the literature [Sew54,Dem56]. Knuth [Knu73, exercise 5.3.4.37] poses its proof of correctness as an exercise.48
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In contrast to Batcher's networks, the odd-even sort is iterative in nature anddoes not have a simple de�nition in the PowerList notation. Our derivation is some-what surprising: from a simple characterization of what it means for a PowerList tobe sorted, the algorithm emerges through a series of transformations. The remain-ing proof of correctness consists of proving that after a �nite number of phases ofthe computation, odd-even sort reaches a �xpoint, and that each phase produces apermutation of the input.In order to derive the algorithm we use the operators ! and  , de�ned by(2.29) { (2.32). They are monotonic in both arguments:x � y ^ p � q ) x!p � y!q (2.112)x � y ^ p � q ) p x � q y (2.113)and they distribute over scalar operators (like " and # ):x!(p " q) = x!p " x!q (2.114)(p " q) x = p x # q x (2.115)These properties are simple to prove by structural induction.A PowerList is ascending when the value of every element in the PowerList isat most the value of its right neighbor. In the PowerList notation this can be writtenusing the ! operator: ascending:p � ?!p � p (2.116)The dual way to express this, using the  operator, isascending:p � p � p > (2.117)We will use both (2.116) and (2.117) in our derivation of the odd-even sort. Theycan be generalized into a Galois-connection between (the Curried functions) ?!and  > ?!q � p � q � p > (2.118)49



www.manaraa.com

legitimizing the use of the word \dual"; (2.118) can be proven by structural induc-tion. In the rest of this section we assume that the elements of the PowerLists aredistinct; this implies that for a PowerList p ./ q we have:p 6= q ^ p 6= ?!p ^ p 6= p > ^ q 6= ?!q ^ q 6= q >This property can be established by extending the order on the elements of aPowerList to a lexical order in the standard way; that is, by using the positionof an element in the PowerList as the second component of the lexical order.We state the following equalities that generalize properties of " and # onscalars fromM to PowerLists over M. For similar PowerLists u; v; r with the propertyu 6= v ^ u 6= r we have:(u # v) " r = u � u # v = u ^ u " r = u (2.119)(u " v) # r = u � u " v = u ^ u # r = u (2.120)u " v " r = u � u " v = u ^ u " r = u (2.121)u # v # r = u � u # v = u ^ u # r = u (2.122)We only prove (2.119) as the remaining proofs are similar. The only propertyof " and # that is used, stated below, follows from (M;�) being total:(8x; y :: (x " y = x _ x " y = y) ^ (x # y = x _ x # y = y)) (2.123)Proof Base case(hai # hbi) " hci = hai� f c 6= a ^ b 6= a, (M;�) is total (2.123) ghai # hbi = hai ^ hai " hci = haiInductive step((p ./ q) # (u ./ v)) " (r ./ s) = p ./ q 50
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� f commutativity (2.12) g(p # u ./ q # v) " (r ./ s) = p ./ q� f commutativity (2.15) g((p # u) " r) ./ ((q # v) " s) = p ./ q� f unique decomposition (2.10) g(p # u) " r = p ^ (q # v) " s = q� f induction (2.119) gp # u = p ^ p " r = p ^ q # v = q ^ q " s = q� f unique decomposition (2.10) gp # u ./ q # v = p ./ q ^ p " r ./ q " s = p ./ q� f commutativity (2.15) g(p ./ q) # (u ./ v) = p ./ q ^ (p ./ q) " (r ./ s) = p ./ qEnd of ProofWe proceed in the derivation of the odd-even sort by deriving two recursive de�ni-tions of ascending from (2.116):ascending:(p ./ q)� f ascending (2.116) g?!(p ./ q) � p ./ q� f ! (2.30) g?!q ./ p � p ./ q� f � (2.17) g?!q � p ^ p � q� f transitivity of � g?!q � p ^ p � q ^ ?!q � q� f monotonicity of ! g?!q � p ^ p � q ^ ?!q � q ^ ?!p � ?!q� f transitivity of � g 51
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?!q � p ^ p � q ^ ?!q � q ^ ?!p � p� f ascending (2.116) twice g?!q � p ^ p � q ^ ascending:q ^ ascending:p (2.124)� f Galois-connection (2.118) gq � p > ^ p � q ^ ascending:q ^ ascending:p (2.125)We continue by exploring the conjunction of the de�nitions of ascending given by(2.124) and (2.125) above:ascending:(p ./ q)� f expanding (2.124),(2.125) and the de�nitions of ascending (2.116),(2.117) gp � q ^ ?!p � p ^ ?!q � p ^ q � p > ^ q � q >� f " # {calculus (2.101) (2.100) gp # q = p ^ ?!p " p = p ^ ?!q " p = p^ p " q = q ^ q # p > = q ^ q # q > = q� f " # {calculus; (2.119) u; v; r := p; q;?!p (2.120) u; v; r := q; p; q > gp # q = p ^ (p # q) "?!p = p ^ ?!q " p = p^ p " q = q ^ (p " q) # q > = q ^ q # p > = q� f " , # idempotent gp # q = p ^ (p # q) " (p # q) "?!p = p ^ ?!q " p = p^ p " q = q ^ (p " q) # (p " q) # q > = q ^ q # p > = q� f" , # idempotent, (2.121) u; v; r := p; p # q; (p # q) "?!p(2.122) u; v; r := q; p " q; (p " q) # q > gp " (p # q) "?!p = p ^ ?!q " p = p^ q # (p " q) # q > = q ^ q # p > = q� f " # {calculus, (2.121) u; v; r := p; (p # q) "?!p;?!q(2.122) u; v; r := q; (p " q) # q >; p > g?!p "?!q " (p # q) = p ^ (p " q) # p ># q > = q� f ! (2.114),  (2.115) g 52
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?!(p " q) " (p # q) = p ^ (p " q) # (p # q) > = q� f Axiom (2.10) gp ./ q = ?!(p " q) " (p # q) ./ (p " q) # (p # q) >From the equality derived above we can conclude that ascending characterizes the�xpoints of the function oddeven, de�ned by:oddeven:hx i = hx i (2.126)oddeven:(p ./ q) = ?!(p " q) " (p # q) ./ (p " q) # (p # q) > (2.127)Note that p and q only appear as p # q and p " q in (2.127). We can thus split thede�nition of oddeven into its even phase (even ) and its odd phase (odd ):even:(p ./ q) = p # q ./ p " q (2.128)even:hx i = hx i (2.129)odd:(u ./ v) = ?!v " u ./ v # u > (2.130)odd:hx i = hx i (2.131)oddeven:p = odd:(even:p) (2.132)2.7.2 Proving that oddeven TerminatesWe proceed by showing that a �nite number of applications of oddeven will convergeto a �xpoint, i.e., termination.(8p :: (9n : n � 0 : oddeven(n+1):p = oddevenn:p)) (2.133)If we can establish termination (2.133), we have by the derivation above for a su�-ciently large n: ascending:(oddevenn:p) (2.134)In order to prove termination (2.133) we introduce the lexical ordering (� ) overPowerLists: (p j q) � (u j v) � (p � u) _ (p = u ^ q � v) (2.135)53
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hx i � hyi � x < y (2.136)Since oddeven returns a permutation of its argument PowerList (this will be provenin Section 2.7.3) it follows that the elements of both PowerLists come from the same,�nite subset L of M. By the �niteness of L we have that (L; <) is well-founded. Byconstruction it follows that � is also well-founded on PowerLists whose elements arein L; i.e., a sequence consisting of permutations of a PowerList p, where neighboringelements are related by � is �nite. The PowerList that is the result of sorting p isas small as any element of such a sequence.We proceed to prove separately that the result of applying even and odd to aPowerList either returns the PowerList itself or a PowerList that is lexically \smaller":Lemma 4 even:p = p _ even:p � p (2.137)odd:p = p _ odd:p � p (2.138)(2.133) now follows from Lemma 4 and (2.132), by the well-foundedness establishedabove. We proceed by proving (2.137) and (2.138) separately.The following equality (2.139) is a simple consequence of the de�nition ofeven; because � is de�ned with the j operator, it is needed in the proof of Lemma5: length:p � 2 ^ length:q � 2 ) even:(p j q) = even:p j even:q (2.139)(2.137) follows, by predicate calculus, from the following Lemma.Lemma 5 even:p � p � :(even:p = p) (2.140)Proof Base cases: hai by inspection, hai j hbieven:(hai j hbi) � hai j hbi 54
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� f Axiom (2.11), even (2.129), Axiom (2.11) gha # bi j ha " bi � hai j hbi� f � (2.135) ga # b < a _ (a # b = a ^ a " b < b)� f :(a " b < b) gb < a� f " # -calculus g:(a # b = a ^ a " b = b)� f Axiom (2.11), even (2.129), Axiom (2.11) g:(even:(hai j hbi) = hai j hbi)inductive case (length:p � 2):even:(p j q) � p j q� f even and j (2.139) geven:p j even:q � p j q� f � (2.135) geven:p � p _ (even:p = p ^ even:q � q)� f induction (2.140) g:(even:p = p) _ (even:p = p ^ :(even:q = q))� f predicate calculus g:(even:p = p ^ even:q = q)� f Axiom (2.9) g:(even:p j even:q = p j q)� f even and j (2.139) g:(even:(p j q) = p j q)End of ProofIn order to prove (2.138), we need a little more machinery. First we generalize the55
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de�nition of odd (2.131)genodd:x:(p ./ q):y = x!q " p ./ q # p y (2.141)odd:(p ./ q) = genodd:?:(p ./ q):> (2.142)Note that the function genodd is only de�ned for PowerLists of length at least 2.The following equality (a consequence of the de�nitions of! and ) providesan alternative to (2.141) with j as the constructor:length:p � 2 ^ length:q � 2 ) genodd:x:(p j q):y = genodd:x:p: q j genodd:!p:q:y(2.143)(2.138) follows by the instantiation x; y := ?;> in lemma 6 (2.144), below.Lemma 6genodd:x:(p j q):y � p j q � x �  p ^ :(genodd:x:(p j q):y = (p j q)) (2.144)Proof Base case omitted. Inductive case, length:p � 2 ^ length:q � 2:genodd:x:(p j q):y � p j q� f genodd and j (2.143) ggenodd:x:p: q j genodd:!p:q:y � p j q� f � (2.135) ggenodd:x:p: q � p _ (genodd:x:p: q = p ^ genodd:!p:q:y � q)� f induction (2.144) g(x �  p ^ :(genodd:x:p: q = p))_ (genodd:x:p: q = p ^ !p �  q ^ :(genodd:!p:q:y = q))� f see (2.145) below, genodd:x:p: q = p ) !p �  q g(x �  p ^ :(genodd:x:p: q = p))_ (genodd:x:p: q = p ^ :(genodd:!p:q:y = q))� f see (2.145) below, genodd:x:p: q = p ) x �  p g(x �  p ^ :(genodd:x:p: q = p)) 56
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_ (x �  p ^ genodd:x:p: q = p ^ :(genodd:!p:q:y = q))� f abbreviate u; v := genodd:x:p: q ; genodd:!p:q:y g(x �  p ^ :(u = p)) _ (x �  p ^ u = p ^ :(v = q))� f predicate calculus gx �  p ^ (:(u = p) _ (u = p ^ :(v = q)))� f predicate calculus gx �  p ^ :(u = p ^ v = q)� f Axiom (2.9) gx �  p ^ :(u j v = p j q)� f abbreviations u; v := genodd:x:p: q ; genodd:!p:q:y gx �  p ^ :(genodd:x:p: q j genodd:!p:q:y = p j q)� f genodd and j (2.143) gx �  p ^ :(genodd:x:(p j q):y = p j q)End of ProofThe proof of Lemma 6 left us with the proof obligation:genodd:a:r:b = r ) (a �  r ^ !r � b) (2.145)this is a simple consequence of the de�nition of genodd.2.7.3 Proving that oddeven Permutes its InputsIn the section above we proved that oddeven reaches a �xpoint and that this �xpointis indeed a sorted PowerList. The only remaining obligation is to prove that oddevenpermutes5 its input. The key observation is that oddeven only exchanges neighboringelements, and only if they are out of order. Our approach is to divide PowerListsinto appropriate sets of neighboring pairs and prove that the functions even and odd5Note that saying that a function permutes its inputs does not imply that the function is apermutation function. 57
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either act as the identity on a pair or swap the elements of the pair. To this end wede�ne a permutation relation � as follows, for PowerLists p; q; u and v of length atleast 2: hai j hbi � hci j hdi � (a = c ^ b = d) _ (a = d ^ b = c) (2.146)(p j q) � (u j v) � p � u ^ q � v (2.147)When two pairs are related by � they are permutations of each other. Note thatthe above de�nition does not relate singleton PowerLists, as it is a trivial exercise toshow that oddeven acts as a permutation function on singletons.Lemma 7 even:(p j q) � (p j q) (2.148)Proof Base case:even:(hai j hbi) � hai j hbi� f even, (2.129) gha # bi j ha " bi � hai j hbi� f � (2.146) g(a = a # b ^ b = a " b) _ (a = a " b _ b = a # b)� f " # calculus gtrueinductive step for length:p � 2even:(p j q) � p j q� f even, (2.139) geven:p j even:q � p j q� f � (2.147) geven:p � p ^ even:q � q� f induction gtrue 58
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End of ProofFrom (2.148) it follows that even permutes its inputs.Proving the same result for odd is more complicated. Using the same neigh-boring pairs as � does will not do the job, since odd may move elements betweensuch pairs. However, by applying the function rr (de�ned by (2.39) and (2.40)) tothe PowerList, the result is then related to the PowerList by �.Lemma 8 rr:(odd:(p j q)) � rr:(p j q) (2.149)In order to prove Lemma 8 we start by exploring when � relates the right shiftedargument and the right shifted result of genodd.z!genodd:x:(hai ./ hbi):y � w!(hai ./ hbi)� f genodd (2.141) gz!(hx " ai ./ hb # yi) � w!(hai ./ hbi)� f ! (2.30) ghz i ./ hx " ai � hwi ./ hai� f Axiom (2.11) ghz i j hx " ai � hw i j hai� f � (2.146) g(z = w ^ x " a = a) _ (z = a _ x " a = w)We take the above derivation as the proof of the base case of the following Lemma:Lemma 9z!genodd:x:(p j q):y � w!(p j q) � (z = w ^ x " p =  p) _ (z =  p ^ x " p = w)(2.150)59
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Proof base case proven above, assume length:p � 2 ^ length:q � 2z!genodd:x:(p j q):y � w!(p j q)� f genodd (2.141) gz!(genodd:x:p: q j genodd:!p:q:y) � w!(p j q)� f !; last:(genodd:x:p: q ) = !p # q gz!genodd:x:p: q j (!p # q )!genodd:!p:q:y � w!p j !p!q� f � (2.147) gz!genodd:x:p: q � w!p ^ (!p # q )!genodd:!p:q:y � !p!q� f induction (2.150) g((z = w ^ x " p =  p) _ (z =  p ^ x " p = w))^ ((!p # q = !p ^ !p " q =  q ) _ (!p # q =  q ^ !p " q = !p))� f " # {calculus g(z = w ^ x " p =  p) _ (z =  p ^ x " p = w)End of ProofLemma 8 follows from Lemma 9 with the instantiation x; y; z; w := ?;>;!q ;!q andthe de�nitions of the functions genodd, ! and rr. This concludes our presentationof the odd-even sort in PowerLists.2.8 SummaryThe PowerList is a versatile data structure that can be used to describe a rangeof di�erent algorithms, including the Fast Fourier Transform, Ladner and Fischer'spre�x sum algorithm, and Batcher's sorting networks6. The PowerList theory issimple, it can be described on a single page. Properties of PowerLists can be provenusing a simple induction principle that closely mimics how PowerList functions arede�ned. We derived Ladner and Fischer's algorithm and an e�cient hypercube6We take no credit for the PowerList description of these algorithms, they were originally pre-sented in [Mis94]. 60
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algorithm for pre�x sum from their speci�cations using equational reasoning overPowerList.We established the close connection between the PowerList notation and hy-percubic architectures. Using the Gray coded mapping, we obtained e�cient im-plementations of PowerList functions on hypercubic architectures. The Gray codedoperators were obtained by formal derivations from their counterparts under thestandard encoding.The derivation of the odd-even sorting algorithm was surprisingly elegant.From a simple characterization of the goal of the algorithm, the algorithm wasderived using properties of PowerLists and total orders. It is encouraging that thederivation did not use any operational considerations, instead it was a case of lettingthe \symbols" do the work. No special consideration was given to the fact that theodd-even sort is a parallel algorithm; this is one of the strengths of the PowerListnotation.

61
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Chapter 3
Parlists

As we saw in Chapter 2 it is possible to specify algorithms such as the DiscreteFast Fourier Transform and Batcher's sorting networks elegantly in the PowerListnotation, without resorting to \index gymnastics". Restricting the lengths of theinputs to powers of two is reasonable for these algorithms, as they are most oftenpresented this way in the literature. However, for most algorithms the restriction isunnatural.In this chapter we present an extension of the PowerList notation to lists ofarbitrary positive lengths and work through a number of examples. This new datastructure is called \ParList", which is short for parallel list. Functions over ParListsare de�ned using structural induction over the data structure, by a base case forsingleton ParLists and two inductive cases: one for even length and one for oddlength ParLists.An earlier version of this work was presented in [Kor97b] and [Kor97c] basedon ideas from my advisor, Jayadev Misra [Mis96]. This presentation simpli�es theaxioms presented in the earlier versions and presents results that were not provablein the earlier theory. 62
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3.1 ParList TheoryA ParList is a non-empty list whose elements are all of the same type, either scalarsfrom the same base type or (recursively) ParLists that enjoy the same property. TwoParLists are similar if they have the same length and their elements are similar; twoscalars are similar when they are from the same base type. We categorize ParListsaccording to their length. The shortest ParList has length 1; it is called a singleton.We denote the singleton containing the scalar x by hx i.A non-singleton ParList v can be deconstructed into a single element and aParList whose length is one less than that of v, using the . (\cons") and the /(\snoc") operator: v = a .p ^ v = q/ b (3.1)where a, b and the elements of p and q are similar to the elements of v, and pand q are similar ParLists. In (3.1) a is the �rst element of v and b is the lastelement of v. This de�nition corresponds to linear list theory, which is well-knownfrom sequential, functional languages such as MirandaTM [Tur86], ML [MTH90] andHaskell [HJW+92], and from the Bird-Meertens theory of lists [Bir89, BW88, Ski94].A ParList, p, of even length has the property that it can be deconstructedusing the ./ (\zip") and the j (\tie") operator:p = u ./ v ^ p = r j s (3.2)where u; v; r and s are similar ParLists with the properties:u contains the elements at the even positions1 of p,v contains the elements at the odd positions of p,r is the �rst half of p, and1Counting starts at zero in this dissertation.63



www.manaraa.com

s is the second half of p.Note the similarity to how the operators ./ and j were de�ned for PowerLists inChapter 2.We formalize the involved types and lengths by introducing the type functionParList that takes two arguments, a type and a positive integer, and returns the typeof all ParLists with elements of the given type and length equal to the given length.ParList : Type� Pos �! TypeUsing ParList we can give the signature for the ParList operators (X is a typeand n is in Pos, the positive natural numbers)h i : X �! ParList:X:1. : X� ParList:X:n �! ParList:X:(n+ 1)/ : ParList:X:n� X �! ParList:X:(n+ 1)j : ParList:X:n� ParList:X:n �! ParList:X:(2�n)./ : ParList:X:n� ParList:X:n �! ParList:X:(2�n)We overload the name ParList, by having it denote the type of all ParLists(corresponding to ParList:X:n for all X and n) and naming the algebra we de�nebelow. We further re�ne the type ParList, by introducing the subtype ParList.X thatcorresponds to all ParLists whose elements are taken from X. Finally, we partitionthe type ParList.X into the subtypes:Singleton:X = ParList:X:1EvenParList:X = ([k : k 2 Pos : ParList:X:(2�k))OddParList:X = ([k : k 2 Pos : ParList:X:(2�k + 1))Note that PowerLists is a subtype of ParList, corresponding to the lists whose lengthis a power of two (ParList:X:(2n) for n 2 Nat).64
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The length function length : ParList:X:n �! Pos is de�ned by(8p : p 2 ParList:X:n : length:p = n) (3.3)Remark The constructors for ParList are de�ned similarly to how one mightde�ne the function power : Real�Pos �! Real, that computes the value of its �rstargument raised to the power of its second argument, i.e., power :x:n = xn. We cande�ne power recursively as follows:power :x:1 = x (3.4)power :x:(2�n+ 1) = x�power :x:(2�n) (3.5)power :x:(2�n) = (power :x:n)2 (3.6)The choices for inductive cases were rather arbitrary, as we could equally well havechosen: power :x:(2�n+ 1) = power :x:(2�n) � x (3.7)power :x:(2�n) = power :x2:n (3.8)Note how (3.2) corresponds to (3.6) and (3.8), and (3.1) corresponds to (3.5) and(3.7). End Remark3.1.1 AxiomsIn the following, we extend the axioms of the PowerList theory [Mis94] to an ax-iomatization of the ParList algebra. The �ve constructors for the ParList algebra:h i; j; ./; .and/ are all isomorphisms on their respective domains, with the followinglaws as consequence, where p; q; u; v 2 ParList.X:n ^ a; b; c 2 X ^ n 2 Pos:hai = hbi � a = b (3.9)p j q = u j v � p = u ^ q = v (3.10)65
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p ./ q = u ./ v � p = u ^ q = v (3.11)a .p = b .q � a = b ^ p = q (3.12)p/ a = q/ b � a = b ^ p = q (3.13)t 2 ParList.X:1 ) (9 a :: t = hai ) (3.14)t 2 ParList.X:(2�n) ) (9 u; v :: t = u j v ) (3.15)t 2 ParList.X:(2�n) ) (9 u; v :: t = u ./ v ) (3.16)t 2 ParList.X:(n+ 1) ) (9 a; p :: t = a .p ) (3.17)t 2 ParList.X:(n+ 1) ) (9 b; q :: t = q/ b ) (3.18)The following axioms are retained from the PowerList theory:hai ./ hbi = hai j hbi (3.19)(p j q) ./ (u j v) = (p ./ u) j (q ./ v) (3.20)The remaining axioms extend the PowerList algebra to de�ne the full ParList algebra.Note that is not necessary to parenthesize axioms (3.24) and (3.25) since axiom(3.23) allows two equally valid bracketings.a .hbi = hai j hbi (3.21)hai/ b = hai j hbi (3.22)a .(p/ b) = (a .p)/ b (3.23)a .p j q/ b = a .(p j q)/ b (3.24)a .p ./ q/ b = a .(q ./ p)/ b (3.25)a .(b .(p ./ q)) = a .p ./ b .q (3.26)Note the symmetry between ./ and j in Axiom (3.20). The roles of ./ and j can beinterchanged in the PowerList algebra, if we do not provide an operational model forit. This is not the case when we consider the ParList algebra. If we interpret . and66
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/ as prepending and appending an element to a ParList then the contrast between(3.24) and (3.25) captures the operational di�erence between ./ and j. Note thesymmetry between the constructors used in the axioms; the only \asymmetric"axiom is (3.26), which does not have a j counterpart.From the ParList axioms we can prove the following laws that are useful inmanipulating ParList expressions2Lemma 10a .(p j q) ./ (u j v)/ b = a .(u ./ p) j (v ./ q)/ b (3.27)((p ./ q)/ a)/ b = p/ a ./ q/ b (3.28)a .(p ./ q) = (u ./ v)/ b � a .q = u/ b ^ p = v (3.29)a .(p j q) = (u j v)/ c � (9 b :: a .p = u/ b ^ b .q = v/ c) (3.30)Proof of (3.27)a .(p j q) ./ (u j v)/ b= f Axiom (3.25) ga .((u j v) ./ (p j q))/ b= f Axiom (3.20) ga .((u ./ p) j (v ./ q))/ b= f Axiom (3.24) ga .(u ./ p) j (v ./ q)/ bProof of (3.29)a .(p ./ q) = (u ./ v)/ b� f introduce symmetry on right-hand side with Axiom (3.12) gc .(a .(p ./ q)) = c .(u ./ v)/ b� f Axiom (3.26) and Axiom (3.25) g2The axiom set above is simpler and more expressive than the one found in [Kor97b, Kor97c]where (3.24), (3.25) and (3.26) were replaced by (3.27), (3.30) and (3.31).67
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c .p ./ a .q = c .v ./ u/ b� f Axioms (3.11) and (3.12) gp = v ^ a .q = u/ bProof of (3.28)p/ a ./ q/ b = ((p ./ q)/ a)/ b� f introduce symmetry to right-hand side with Axioms (3.12) and (3.23) gc .(p/ a ./ q/ b) = (c .(p ./ q)/ a)/ b� f Axiom (3.25) gc .(p/ a ./ q/ b) = (c .q ./ p/ a)/ b� f (3.29) gc .(q/ b) = (c .q)/ b� f Axiom (3.23) gtrueEnd of ProofThe proof of (3.30) can be found in Section 3.1.2 below. From (3.29) and (3.18) wecan derive the following laws, which are useful in proofs of properties of ParLists.Lemma 11a .(p ./ q) = (u ./ p)/ b � a .q = u/ b (3.31)(8a; p; q :: (9 b; u :: a .(p ./ q) = (u ./ v)/ b ^ a .q = u/ b)) (3.32)(8b; u; v :: (9 a; q :: a .(v ./ q) = (u ./ v)/ b ^ a .q = u/ b)) (3.33)Proof of (3.32) ((3.33) is similar); (3.31) follows from (3.29) by instantiation.true� f Axiom (3.18) g(8a; q :: (9 b; u :: a .q = u/ b))� f Lemma 11 (3.31) g(8a; p; q :: (9 b; u :: a .(p ./ q) = (u ./ p)/ b ^ a .q = u/ b))68
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End of ProofScalar OperatorsLet 
 : X� X �! X be a binary operator, de�ned on the scalar type X. We lift
 to operate on ParList.X, i.e., 
 : ParList:X:n� ParListX:n �! ParList:X:n in an\element-wise" fashion, with the following lawshai 
 hbi = ha
 bi (3.34)(a .p)
 (b .q) = (a
 b) .(p
 q) (3.35)(p ./ q)
 (u ./ v) = (p
 u) ./ (q 
 v) (3.36)As alternatives to (3.35) and (3.36) we could have chosen (3.37) and (3.38) as theyare interchangeable: (p/ a)
 (q/ b) = (p
 q)/ (a
 b) (3.37)(p j q)
 (u j v) = (p
 u) j (q 
 v) (3.38)The proofs that (3.37) and (3.38) follows from (3.34), (3.35) and (3.36) can be foundin [Kor97c].3.1.2 Induction Principle for ParListA ParList p with elements from the type X (i.e., p 2 ParLists:X) can be deconstructeduniquely into an ordered sequence of its elements; this can be achieved by building aconstructor tree for p. We use constructor trees as the formal basis for the inductionprinciple for ParLists and in the de�nition of functions over ParLists. We build theconstructor tree as follows. First, restrict the use of . and / so they only constructelements in OddParList.X. Pick one of ./ and j , and one of . and / ; without lossof generality we choose ./ and . below. Construct a tree from p by labeling theroot with p; for each leaf labeled with an element of ParList.X, say q, perform thefollowing operations: 69
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� If q 2 Singleton:X then by Axiom (3.14) there exists a in X such that q = hai.Make the leaf node an interior node by creating a child leaf labeled with a.� If q 2 EvenParList:X then by Axiom (3.16) there exists similar ParLists u andv such that q = u ./ v. Make the leaf node labeled q interior by creating itstwo child leaves labeled u and v from left to right.� If q 2 OddParList:X then by Axiom (3.16) there exists a ParList u and anelement a in X such that q = a .u. Make the leaf node labeled q interior bycreating its two child leaves labeled a and u from left to right.These operations are performed until all the leaves in the tree are labeled by ele-ments in X. Each operation produces children whose labels have lengths that areshorter than the label of their parent3; hence, the tree construction terminates. Theelements of p appear in order in the leaves of the resulting tree. The construction ofthe tree is deterministic since the types Singleton.X, EvenParList.X, and OddParList.Xare disjoint, and Axioms (3.11) and (3.12) assert that the choices of u; v and a areunique. Thus, by picking a pair of constructors the constructor tree for a ParList isunique.We use constructor trees as the structure that de�nes the inductive principlefor ParLists. Let � : ParList:X:n �! Bool be a predicate whose truth is to be estab-lished for all ParLists over X. To establish the property �:p for a ParList p, buildthe constructor tree for p using a constructor pair. If we can prove that � holdsat a node when � holds at each of its non-leaf children, then we can conclude that� holds at the root of the tree. These observations are captured in the induction3Consider the lengths of elements of X as 0.
70
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principle for ParLists:(8x : x 2 X : �:hx i)^ ( (8p; q; n : p; q 2 ParList:X:n ^ n 2 Pos : �:p ^ �:q ) �:(p j q))_(8p; q; n : p; q 2 ParList:X:n ^ n 2 Pos : �:p ^ �:q ) �:(p ./ q)) )^ ( (8p; x : p 2 EvenParList:X ^ x 2 X : �:p ) �:(x .p))_(8p; x : p 2 EvenParList:X ^ x 2 X : �:p ) �:(p/ x)) )) (8p; n : p 2 ParList:X:n ^ n 2 Pos : �:p)In the induction principle the choice of the constructor pair is captured by the fourdisjuncts. A proof that follows the induction principle consists of three parts: abase case, an even inductive step and an odd inductive step. This is illustrated inthe proof of (3.30)a .(p j q) = (u j v)/ c � (9 b :: a .p = u/ b ^ b .q = v/ c)given below.Proof of (3.30). Base case:a .(hx i j hyi) = (hz i j hdi)/ c� f Axiom (3.19) ga .(hx i ./ hyi) = (hz i ./ hdi)/ c� f Lemma 11 (3.31) ga .hyi = hz i/ c ^ hx i = hdi� f Axioms (3.21) (3.22) and (3.14) ga = z ^ y = c ^ x = d� f Axioms (3.21) (3.22) and (3.14) ga .hx i = hz i/ d ^ d .hyi = hdi/ c� f one-point rule b := d g 71
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(9b :: a .hx i = hz i/ b ^ b .hyi = hdi/ c)Odd inductive stepa .(d .p j q/ x) = (y .u j v/ z)/ c� f Axiom (3.24) and Axiom (3.23) ga .(d .(p j q))/ x = y .((u j v)/ z)/ c� f Axiom (3.12) and Axiom (3.13) gd .(p j q) = (u j v)/ z ^ a = y ^ x = c� f induction (3.30) g(9b :: d .p = u/ b ^ b .q = v/ z) ^ a = y ^ x = c� f predicate calculus and Axioms (3.12) and (3.13) g(9b :: a .(d .p) = y .(u/ b) ^ (b .q)/ x = (v/ z)/ c)� f Axiom (3.23) g(9b :: a .(d .p) = (y .u)/ b ^ b .(q/ x) = (v/ z)/ c)Even inductive step:a .((p ./ q) j (u ./ v)) = ((r ./ s) j (t ./ w))/ c� f Axiom (3.20) ga .((p j u) ./ (q j v)) = ((r j t) ./ (s j w))/ c� f (3.29) ga .(q j v) = (r j t)/ c ^ p j u = s j w� f induction (3.30) g(9b :: a .q = r/ b ^ b .v = t/ c ^ p = s ^ u = w)� f (3.29) g(9b :: a .(p ./ q) = (r ./ s)/ b ^ b .(u ./ v) = (t ./ w)/ c)End of Proof
72
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3.1.3 Functions in ParListA function over ParLists is de�ned by picking a constructor pair and giving threedi�erent de�ning cases based on the length of the argument ParList: singleton, evenlength and odd length. Functions are de�ned unambiguously this way, since theconstructor tree for a ParList is unique given a constructor pair. Each de�ning caseis speci�ed using pattern-matching on the argument ParList:Subtype AllowedConstructorsSingleton.X h iEvenParList.X ./ jOddParList.X . /We exploit parallelism as much as possible by requiring that . and / only be usedin function de�nitions for ParLists of odd lengths. When the argument is of evenlength, the computation should be expressed using a balanced divide-and-conquerstrategy. Arguments of odd lengths are handled by an alignment step, introducedby necessity.As an example of a function de�nition over ParLists, we de�ne the functionrev : ParList:X:n �! ParList:X:n that reverses its argument.rev:hai = hai (3.39)rev:(p ./ q) = rev:q ./ rev:p (3.40)rev:(a .p) = rev:p / a (3.41)Note that the choice of ./ and . as the constructor pair was arbitrary: (3.40) canbe replaced by (3.42), and (3.41) can be replaced by (3.43) de�ned below withoutchanging the value of rev. rev:(p j q) = rev:q j rev:p (3.42)rev:(p/ a) = a .rev:p (3.43)73
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In the de�nition of rev, (3.40) expresses that each recursive case is indepen-dent and can be evaluated in parallel. The step described by (3.41) correspondsto a sequential \alignment" step, necessary before a balanced recursive step canbe performed. The \alignment" step does not have to be sequential, dependingon the parallel architecture and the concrete implementation of ParList, rev can beevaluated in constant time. This would be the case on a CREW PRAM with thestraightforward implementation of ParList.A familiar property of rev is that it is its own inverse (an involution):rev:(rev:p) = p (3.44)We use the proof of (3.44) as an illustration of applying the inductive principle forParLists to a function de�nition:Proof of (3.44), base case:rev:(rev:hai)= f rev (3.39) grev:hai= f rev (3.39) ghaiInductive even case:rev:(rev:(p ./ q))= f rev (3.40) grev:(rev:q ./ rev:p)= f rev (3.40) grev:(rev:p) ./ rev:(rev:q)= f induction (3.44) twice gp ./ qInductive odd case: 74
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rev:(rev:(a .(p ./ q)))= f rev (3.41) grev:(rev:(p ./ q)/ a)= f rev (3.43) ga .rev:(rev:(p ./ q))= f induction (3.44) ga .(p ./ q)End of ProofThe odd inductive case in the proof used (3.43). A longer proof that does not use(3.43) can be found in [Kor97c].3.1.4 Data Movement FunctionsIn this section we de�ne operators and functions that move elements within a ParList.The operators ! and  are used in de�ning the odd-even sort in Section 3.3, andin de�ning the pre�x sum. In Lemma 12 the operators ! and  provide a way torewrite . expressions into / expressions and vice-versa.The operator ! : X� ParList:X:n �! ParList:X:n takes an element and aParList, and \pushes" a scalar into the list from the left. The rightmost elementof the list is lost under this operation. The operator ! is de�ned as follows:a!hbi = hai (3.45)a!(p/ b) = a .p (3.46)a!(p ./ q) = a!q ./ p (3.47)The dual operator  : ParList:X:n� X �! ParList:X:n \pushes" a scalar into thelist from the right and the leftmost element of the list is lost:hbi a = hai (3.48)75
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(b .p) a = p/ a (3.49)(p ./ q) a = q ./ p a (3.50)Next we de�ne the functions �rst and last that return the �rst and lastelements, respectively, of a ParList. Their types are �rst : ParList:X:n �! X andlast : ParList:X:n �! X; they are de�ned by:�rst:hai = a (3.51)�rst:(a .p) = a (3.52)�rst:(p j q) = �rst:p (3.53)last:hai = a (3.54)last:(p/ b) = b (3.55)last:(p j q) = last:q (3.56)We could equally well have chosen the following de�nitions for the even case:�rst:(p ./ q) = �rst:p (3.57)last:(p ./ q) = last:q (3.58)Where convenient we use the following abbreviations for �rst and last: p = �rst:p and !p = last:pUsing the de�nitions above we can state the following pairwise dual prop-erties. We prove (3.59), the proof of (3.60) is dual. The proofs of (3.61) through(3.64) are not very interesting and are omitted.Lemma 12 a .p = a!p / !p (3.59)p/ a =  p . p a (3.60)76
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p =  p!(p a) (3.61)p = (a!p) !p (3.62)a .(b!p) = a!(b .p) (3.63)(p/ b) a = (p b)/ a (3.64)Proof of (3.59). Base Case:a!hx i / last:hx i= f ! (3.45) and last (2.35) ghai/ x= f (3.21) and (3.22) ga .hx iEven inductive case:a .(p ./ q) = a!(p ./ q) / last:(p ./ q)� f ! (3.47), last (3.56) ga .(p ./ q) = (a!q ./ p) / !q� f Lemma 11 (3.31) ga .q = a!q / !q� f induction (3.59) gtrueOdd inductive case:a!(p/ b)/ last:(p/ b)= f ! (3.47) g(a .p)/ last:(p/ b)= f last (3.56) g(a .p)/ b= f Axiom (3.23) ga .(p/ b)End of Proof 77
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3.1.5 Broadcast SumWe turn to the de�nition of the function b sum : ParList:Y:n �! ParList:Y:n, thatreturns a list where each element is the sum of all the elements of the argument list (abroadcast sum). Here Y is a type with the property that (Y;+) is a semigroup (i.e., +is associative). It is necessary to de�ne the function [a+] : ParList:Y:n �! ParList:Y:n,that returns the ParList where a has been added to each element of the argumentParList. b sum:hai = a (3.65)b sum:(a .p) = (a+ !t ) . [a+]:t; where t = b sum:p (3.66)b sum:(p ./ q) = t ./ t; where t = b sum:(p+ q) (3.67)[a+]:hbi = ha+ bi (3.68)[a+]:(b .p) = (a+ b) . [a+]:p (3.69)[a+]:(p j q) = [a+]:p j [a+]:q (3.70)When b sum is evaluated with an argument of length 2n � 1; n � 1 there are n� 1deconstructions using . and n � 1 deconstructions using ./ . Each deconstructiontakes one parallel time step in order to perform the sum. The total number ofparallel steps thus becomes 2�n � 2. In contrast, if the argument is of length 2n,only n parallel steps are needed. Adding a su�cient number of dummy elements(i.e., identity elements of + if they exist) to a list makes it into a PowerList. Thus,functions like b sum can be evaluated in parallel in fewer steps than with the originallist.3.1.6 Reusing PowerList Proofs in the ParList AlgebraOne of the advantages of the ParList algebra is that it is an extension of the PowerListalgebra. Assume that we have proved a property of a function de�ned in the78
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PowerList algebra. When we extend the de�nition of the function to a ParList func-tion by adding an odd de�ning case, the theorem still holds for those ParLists thatare also PowerLists, i.e., whose length is a power of two. Moreover, inductive proofsof properties done in the PowerList algebra can be reused in the proof of the sameproperty for the extended function in the ParList algebra. Depending on the struc-ture of the PowerList proof, the only remaining proof obligation may be to prove theodd inductive step.Take as an example the function rev de�ned in the PowerList algebra by (3.39)and (3.40). A proof of (3.44), (i.e., rev:(rev:p) = p) consisting of the base and evencases is su�cient to prove the property in the PowerList algebra. When (3.41) isadded to make rev a ParList function, the odd case is the only missing part of theproof; the two others can be reused.In general, the base case can always be reused from the PowerList proof; theinductive case from the PowerList proof can be reused as part of the proof of theeven case. If there are no assumptions made about the structure or lengths of thesub-terms in the proof and the proof does not use other equalities, then the entireeven case can be reused. In the even inductive step in the proof of (3.44), the\shape" of the sub-terms were left unspeci�ed; thus the entire case can be reused.When the inductive case in the PowerList proof assumes that the sub-termsare constructed in two levels, e.g., the proof obligation is written as �:((p ./ q) j(u ./ v)), then the even step needs to be completed with a proof of �:((a.p) j (b.q)).When a PowerList proof uses other equalities proven in the PowerList algebrathat have not yet been extended to ParList, then these proofs need to be extendedto ParLists as well.The following is an example of a property that can be proven in the PowerListalgebra: length:p is even ) length:p is a power of 279
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However, this property is speci�c to PowerLists. An attempt at an inductive ParListproof breaks down in the even case, if the sub-terms are of odd length. Note thatthe implication is vacuously true in the odd case, so a naive reuse of the PowerListproof could have dire consequences.3.1.7 ConcatenationA very useful operation on lists is to append one list onto another, regardless of thelength of the lists. We de�ne the concatenation operator} : ParList:X:n� ParList:X:m �! ParList:X:(n+m)by the following nine equations4; note that } has a lower binding power than thatof ./, j, . and / : hai } hbi = hai ./ hbi (3.71)hai } p/ b = a .p/ b (3.72)hai } (p ./ q) = a .(p ./ q) (3.73)a .p } hbi = a .p/ b (3.74)a .p } q/ b = a .(p} q)/ b (3.75)a .(p ./ q) } u ./ v = a .((p}u) ./ (q} v)) (3.76)p ./ q } hai = (p ./ q)/ a (3.77)p ./ q } (u ./ v)/ a = ((p}u) ./ (q} v))/ a (3.78)p ./ q } u ./ v = (p}u) ./ (q} v) (3.79)By its nature} is a generalization of j, so it is no surprise that} is de�ned using ./ asthe constructor. It does not appear that j can be used as the de�ning constructor for}. Note the similarity between (3.20) and (3.79); in fact, by remove the equationsabove where the arguments to } have di�erent length (i.e., (3.72), (3.73), (3.74),4There are nine de�ning cases to account for all combinations of the three cases for each operand.80
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(3.76), (3.77) and (3.78)) we are left with axioms ((3.71), (3.75) and (3.79)) thatde�ne an operator isomorphic to j. Restricting the type of arguments of} to lists ofequal length and only keeping those equations that make sense under this restriction(i.e., (3.71), (3.75) and (3.79)) we have de�ned an operator that is isomorphic to j.Many properties that hold for j hold for } as well; however, they are moretedious to prove since there are 9 de�ning cases to consider. We list a few propertiesof } below: �rst:(p} q) = �rst:p (3.80)last:(p} q) = last:q (3.81)a!(p} q) = a!p } !p!q (3.82)(p} q) a = p  q } q a (3.83)[a+]:(p} q) = [a+]:p } [a+]:q (3.84)sum:(p} q) = sum:p } sum:q (3.85)One important law that holds for j but not for } is (3.38), due to the ambiguitythat arises when deconstructing the arguments using } .Since} is a generalization of j, one could ask why}was not chosen as oneof the fundamental constructors for ParList. The arguments of j and ./ are of equallength, enforcing a balanced construction, which is essential to obtaining e�cientparallel implementations. The Bird-Meertens theory of lists is based on a concate-nation operator similar to } . We discuss this theory in Chapter 5 along with otherrelated work.
81
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3.2 Pre�x SumIn Chapter 2 we saw that the pre�x sum computation can be speci�ed by a PowerListfunction (ps), as the unique solution to the equation (in u):u = (0!u) + p (3.86)In Chapter 2 we derived a solution to (3.86) for the even case. Here we explore theodd case:ps:(p/ a)= f introduce q/ b = ps:(p/ a) gq/ b= f de�ning equation for ps (3.86) g0!(q/ b) + p/ a= f !(3.46) g0 .q + p/ a= f Lemma 12 (3.59) g0!q/ !q + p/ a= f Axiom (3.35) g(0!q + p)/ (!q + a)Summarizing:q/ b = (0!q + p)/ (!q + a)� f Axiom (3.13) gq = 0!q + p ^ b = !q + a� f de�ning equation for ps (3.86), Leibnitz Rule gq = ps:p ^ b = last:(ps:p) + aFrom the above, along with the PowerList de�nition from Chapter 2, we get thefollowing de�nition of Ladner and Fischer's algorithm:ps:hai = hai (3.87)82
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ps:(p ./ q) = (0!t+ p) ./ t; where t = ps:(p+ q) (3.88)ps:(p/ a) = ps:p / (last:(ps:p) + a) (3.89)Just as in the case of the broadcast sum, a sequential alignment step was introducedfor the odd case.3.3 Odd-Even SortIn this section we revisit the odd-even sort that we derived for PowerLists in Chapter2. As in the case of the pre�x sum discussed in Section 3.2 above, the restriction toinputs whose lengths are a power of two is unnatural for the odd-even sort. We willextend the PowerList algorithm presented in Chapter 2 to a ParList algorithm, andextend the results on sorting from the PowerList Chapter to ParLists. We presentthe derivation of the algorithm from its speci�cation and prove that the algorithmterminates. We only exhibit the top level of the termination proof, and omit theextensions of the PowerList results needed to complete the proof.3.3.1 SortingWe start by extending relational operators to ParLists. Let 4 be a relation de�nedon the data type X, i.e., 4 : X� X �! Bool and let p; q; u; v 2 ParList:X:n, andx; y 2 X; we de�ne: hx i 4 hyi � x 4 y (3.90)(p ./ q) 4 (u ./ v) � (p 4 u) ^ (q 4 v) (3.91)(a .p) 4 (b .q) � (a4b) ^ (p 4 q) (3.92)As in the case of PowerLists, the laws for the other constructors are a consequenceof this de�nition: (p j q) 4 (u j v) � (p 4 u) ^ (q 4 v) (3.93)83
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(p/ a) 4 (q/ b) � (p 4 q) ^ (a 4 b) (3.94)We extend the de�nition of ascending given in Chapter 2 to OddParList.M byascending:(a .p) � a!p � p (3.95)ascending:(q/ b) � q � q b (3.96)As is most often the case, only one of the above equations is needed, since one canbe proven from the other. It is worth noting that (3.95) and (3.96) do not use >and ?.We recall the following identities of the " - # calculus of Chapter 2:(u # v) " r = u � u # v = u ^ u " r = u (3.97)(u " v) # r = u � u " v = u ^ u # r = u (3.98)u " v " r = u � u " v = u ^ u " r = u (3.99)u # v # r = u � u # v = u ^ u # r = u (3.100)We prove (3.97) by reusing the proof of (2.119) in Chapter 2 for the base case andthe even case. Since the even case did not make any assumptions about the lengthsof sub-terms in the inductive step, the only remaining proof obligation is the oddinductive case.Proof of (3.97). Odd inductive case:((a .p) # (b .q)) " (c .v) = a .p� f # over . (3.35) g(a # b . p # q) " (c .v) = a .p� f " over . (3.35) g(a # b) " c . (p # q) " v = a .p� f Axiom (3.13) g(a # b) " c = a ^ (p # q) " v = p 84
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� f inductive and base case ga # b = a ^ a " c = a ^ p # q = p ^ p " v = p� f Axiom (3.12) ga # b . p # q = a .p ^ a " c . p " v = a .p� f " # over . (3.35) g(a .p) # (b .q) = a .p ^ (a .p) " (c .v) = a .pEnd of ProofWe start our derivation of odd-even sort in ParLists by exploring the �rst de�nition(3.95) of ascending:ascending:(a .(p ./ q))� f ascending (3.95) ga!(p ./ q) � p ./ q� f ! (3.46) ga!q ./ p � p ./ q� f � (3.91) ga!q � p ^ p � q� f monotonicity of  ga!q � p ^ p � q ^ (a!q) !q � p !q� f Lemma 12 (3.62) ga!q � p ^ p � q ^ q � p !q� f transitivity of �, twice ga!q � p ^ p � q ^ q � p !q ^ p � p !q ^ a!q � q� f �rst is monotonic, so a!q � p ) a �  p ga!q � p ^ p � q ^ q � p !q ^ p � p !q ^ a!q � q ^ a �  p� f " # calculus (2.100) and (2.101) gp = a!q " p ^ p = p # q ^ q = p " q ^ q = p !q # q85
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^ p = p # p !q ^ q = a!q " q ^ a = a # p� f reorder terms ga = a # p ^ p = a!q " p ^ p = p # q ^ p = p # p !q^ q = p !q # q ^ q = a!q " q ^ q = p " q� f (3.100) with u; v; r := p; q; p !q and (3.99) with u; v; r := q; a!q; p ga = a # p ^ p = a!q " p ^ p = p # q # p !q ^ q = p !q # q ^ q = q " a!q " p� f (3.97) u; v; r := p; a!q; p # q # p !q ; (3.98) u; v; r := q; p !q ; q " a!q " p ga = a # p ^ p = (a!q " p) # p # q # p !q ^ q = (p !q # q) " q " a!q " p� f Axiom (3.11) and Axiom (3.12) ga .(p ./ q) = (a # p) .((a!q " p) # p # q # p !q ./ (p !q # q) " q " a!q " p) (3.101)In Chapter 2 we de�ned the odd-even sort oddeven for PowerLists by:even:(p ./ q) = p # q ./ p " q (3.102)even:hx i = hx i (3.103)odd:(u ./ v) = ?!v " u ./ v # u > (3.104)odd:hx i = hx i (3.105)oddeven:p = odd:(even:p) (3.106)We will use the above as the de�nition of oddeven for the Singleton and EvenParListcases, and continue by exploring (3.101) for a de�nition for the OddParList.M case:a # p . ((a!q " p) # p # q # p !q ./ (p !q # q) " q " a!q " p)= f property of  , !: (a!q) !q = q ga # p . ((a!q " p) # p # (a!q) !q # p !q ./ (p !q # (a!q) !q ) " q " a!q " p)= f ! over " and # ga # p . ((a!q " p) # p # (a!q # p) !q ./ (p # a!q) !q " q " a!q " p)= f even (3.102) for EvenParList ga # p . even:(a!q " p ./ p # (a!q # p) !q )= f �rst distributes over # ;  (3.50) g86
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�rst:(a!q # p) . even:(a!q " p ./ p # (a!q # p) !q )= f de�ne odd for OddParList.M by (3.108) godd:((a!q # p ./ a!q " p)/ !q )= f even (3.102) godd:(even:(a!q ./ p)/ !q )= f ! (3.47) godd:(even:(a!(p ./ q))/ !q )= f de�ne even for OddParList.M by (3.107) godd:(even:(a .(p ./ q)))= f de�ne oddeven for OddParList.M by (3.109) goddeven:(a .(p ./ q))We have derived the following de�nition of the odd-even sort for OddParList.M:even:(a .q) = even:(a!q)/ !q (3.107)odd:(p/ b) =  p .even:(p b) (3.108)oddeven:(a .p) = odd:(even:(a .p)) (3.109)Note that we use the PowerList function even in the above derivation and de�nition.Since even is de�ned without the use of > and ?, the above de�nition does notdepend on their existence. It is also worth noting the duality between (3.107) and(3.108); had we started with (3.96) as a de�nition of ascending, we would havederived an algorithm where the roles of odd and even were reversed:oddeven0:(q/ b) = even:(odd:(q/ b)) (3.110)We proceed by proving that iterating oddeven converges towards a (sorted) �xpoint.The lexical ordering (� ) used for PowerLists is extended to ParLists as follows:a .u � b .v = a < b _ (a = b ^ u � v) (3.111)u/ a � v/ b = u � v _ (u = v ^ a < b) (3.112)87
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The convergence property follows fromeven:p � p � :(even:p = p) (3.113)We start by proving the odd inductive case:even:(a .q) � a .q � :(even:(a .q) = a .q) (3.114)Proof of (3.114)even:(a .q) � a .q� f even (3.107) geven:(a!q)/ !q � a .q� f Lemma 12 (3.59) geven:(a!q)/ !q � a!q/ !q� f � (3.112) geven:(a!q) � a!q _ (even:(a!q) = a!q ^ !q < !q )� f induction (3.114), see (3.113) below g:(even:(a!q) = a!q) _ (even:(a!q) = a!q ^ !q < !q )� f predicate calculus g:(even:(a!q) = a!q ^ !q = !q )� f Axiom (3.12) g:(even:(a!q)/ !q = a!q/ !q )� f even (3.107); Lemma 12 (3.59) g:(even:(a .q) = a .q)End of ProofTo reuse the proof of (3.113) from Section 2.7.2, we need to establisheven:(a .p j q/ b) � a .p j q/ b � :(even:(a .p j q/ b) = a .p j q/ b) (3.115)This proof is omitted, since it follows closely the proof given in Chapter 2.88
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The proof of the dual resultodd:(p/ b) � p/ b � :(odd:(p/ b) = p/ b) (3.116)is similar to the above proof and is omitted.3.4 Adder CircuitsIn [Ada94] Will Adams presented PowerList descriptions for two arithmetic circuitsthat perform addition on natural numbers: the ripple carry adder and the carrylookahead adder. The ripple carry adder performs addition as it is �rst taught ingrade school; it is an inheritly sequential method, yielding a running time that islinear in the number of bits to be added. The carry lookahead adder uses a pre�xsum calculation to propagate carries, yielding a method that is logarithmic in thenumber of bits to be added in a setting where su�cient parallelism is available.Adams proved that the ripple carry circuit correctly implements addition,and that the carry lookahead and the ripple carry circuits implement the samefunction. This result was established in the PowerList algebra. Since the PowerListalgebra only contains lists whose length are a power of two, and there are no a priorirestrictions on the length of either addition circuit, these circuits should be speci�edas ParList functions.In the following we extend the de�nition of the addition circuits and theequivalence result to the ParList algebra. We start by de�ning the data typesBit = f0,1gTrit = f0,1,�gwhere 0 and 1 are the binary digits, and � corresponds to a \propagate" action forthe carry-in value to a position, in the carry lookahead adder.89
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The ripple carry adder takes three arguments:rc : Bit� ParList:Bit:n� ParList:Bit:n �! ParList:Bit:n� BitThe �rst argument is the carry-in bit and the second and third arguments are thetwo ParLists of bits that are to be added. The result is a pair; the �rst component ofthe pair is a ParList containing the result of the addition, and the second componentis the carry-out bit from the addition. The following equations de�nes rc, where(3.117) and (3.118) are taken from [Ada94]:rc:b:hx i:hyi = (h(x+ y + b) mod 2i; (x+ y + b)� 2) (3.117)rc:b:(p j q):(r j s) = (t; d) (3.118)where t = u j v(u; c) = rc:b:p:r(v; d) = rc:c:q:s (3.119)rc:c:(p/ a):(q/ b) = (u/ y; x) (3.120)where x = (a+ b+ d)� 2y = (a+ b+ d) mod 2(u; d) = rc:c:p:qThe carry lookahead adder has the following typecl : Trit� ParList:Trit:n� ParList:Trit:n �! ParList:Trit:n� TritTo specify the carry lookahead adder, Adams introduced the associative scalar op-erators �; ? and � de�ned by:� : Trit� Trit �! Trit x � y = 8<: x if x = y� if x 6= y (3.121)? : Trit� Trit �! Trit x ? y = 8<: y if y 6= �x if y = � (3.122)90
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� : Trit� Trit �! Trit x� y = 8<: x if y 6= �:y if y = � (3.123)where :0 = 1:1 = 0:� = �Adams [Ada94] de�ned the carry lookahead adder bycl:b:p:q = (t; d) (3.124)where t = s� rd = !s ? !rr = p � qs = ps:(b!r)and ps is computed using the associative operator ? (that has � as its neutralelement). He proceeded by deriving the following recursive description of cl for theeven case: cl:b:(p j q):(u j v) = (t; d) (3.125)where t = r j s(r; a) = cl:b:p:u(s; c) = cl:a:q:vBy expanding the odd case of the de�nition of cl we get:cl:c:(p/ x):(q/ y) = (a;w) (3.126)where w = u� va = !u ? !vv = (p/ x) � (q/ y)u = ps:(b!v)Comparing this with the quantities de�ned by cl:b:p:q (3.124), we get91
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u= f (3.126) gps:(b!v)= f above gps:(b!(r/ (x � y)))= f ! (3.46) gps:(b .r)= f Lemma 12 (3.60) gps:((b!r)/ !r )= f ps (3.89) gps:(b!r)/ (last:(ps:(b!r)) ? !r )= f (3.124) gs/ (!s ? !r )w= f (3.126) gu� v= f above g(s/ (!s ? !r ))� (r/ (x � y))= f Axiom (3.37) g(s� r)/ ((!s ? !r )� (x � y))= f (3.124) gt/ (d� (x � y))In summary, we havecl:c:(p/ x):(q/ y) = (t/ (d� (x � y)); d ? (x � y)) (3.127)where cl:b:p:q = (t; d)We can now prove the missing case in the proof of the equivalence of the ripple carry92
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and carry lookahead adders.Proofrc:c:(p/ a):(q/ b) = cl:c:(p/ a):(q/ b)� f rc (3.120) and cl (3.127) g(s/ ((a+ b+ d) mod 2); (a+ b+ d)� 2) = (t/ (e� (x � y)); e ? (x � y))^ (s; d) = rc:c:p:q ^ (t; e) = cl:c:p:q� f by induction (s; d) = (t; e) [Ada94] g(s/ ((a+ b+ d) mod 2); (a + b+ d)� 2) = (s/ (d� (x � y)); d ? (x � y))� f equality on pairs g(a+ b+ d)� 2 = d ? (x � y) ^ s/ ((a+ b+ d) mod 2) = s/ (d� (x � y))� f Axiom (3.13) g(a+ b+ d)� 2 = d ? (x � y) ^ s = s ^ (a+ b+ d) mod 2 = d� (x � y)� f (3.128) and (3.129) see below gtrueEnd of ProofIn the last hint we used the following identities established in [Ada94]:d ? (x � y) = (x+ y + d)� 2 (3.128)d� (x � y) = (x+ y + d) mod 2 (3.129)Note that in the inductive step we need to establish that the lemmas that were usedin proving the equivalence [Ada94] generalize to ParLists. These proofs are omittedin this presentation, since they add little insight into the problem or the ParListtheory.3.5 SummaryThe ParList notation is an appropriate generalization of the PowerList notation. Forcertain PowerList functions, such as the pre�x sum, it is unnatural to require that93
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the length of its input is a power of two. With ParLists it is possible to expressparallel computations over inputs of arbitrary lengths. For some ParList functionsthis approach has the drawback that for each odd length encountered during decon-struction of the argument, a sequential alignment step is introduced.The ParList theory is an extension of the PowerList theory, obtained by addingthe constructors . and / from linear list theory. The ParList theory is more compli-cated; it has 18 axioms in comparison with the 7 axioms in the PowerList theory.However, the additional axioms are simple and have reasonable interpretations instandard models of linear lists. The induction principle for ParLists is simple; itclosely follows the way that functions are de�ned over ParLists.Many of the PowerList functions that we studied in Chapter 2 have simpleextensions in the ParList notation; this was done by providing the inductive case forParLists of odd length. We derived the odd cases for Ladner and Fischer's pre�xsum algorithm and the odd-even sort, and extended Adams' de�nitions of the ripplecarry and the carry lookahead addition circuits to ParLists.The set of shared axioms makes it possible to reuse proofs of properties ofthe corresponding PowerList functions when proving the same properties of ParListfunctions. Combining this observation with the induction principle for ParLists wepresented a strategy for reusing PowerList proofs in the ParList theory.
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Chapter 4
Plists

In this chapter we generalize the PowerList data structure to PLists. PLists areconstructed with the n-way ./ and j operators; e.g., for positive n the n-way j takesn similar PLists and returns their concatenation. While the PowerList notation isintimately tied to radix 2, the PList notation enables us to state properties andalgorithms in the radix that is most suited for the problem. The PList notation iseven more general; it allows the use of mixed radices in speci�cations, and facilitatesalgebraic reasoning about such speci�cations.We illustrate the PList notation by specifying three generalized connectionnetworks and proving that these network are isomorphic. This work is joint workwith my advisor Jayadev Misra [MK97].Note on NotationWe use square brackets to denote ordered quanti�cation in the PList algebra. Theexpression [./i : i 2 n : p:i] is a closed form for the application of the n-ary operator./ applied to the PLists p:i in order. The range i 2 n means that the terms ofthe expression are written from 0 through n�1 in their numeric order. We assumethat these ranges are non-empty. The same convention applies to the expression95
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[j i : i 2 n : p:i]; it will also be used for other non-commutative operators, such asstring concatenation.4.1 PList - An Extension of the PowerList AlgebraA PList is a non-empty linear data structure, whose elements are all of the sametype, either scalars from the same base type, or (recursively) PLists that enjoy thesame property. We de�ne the length of a PList by length : PList:X:n �! Pos:(8p : p 2 PList:X:n : length:p = n) (4.1)Two PLists are similar if they have the same length and their elements are similar;two scalars are similar when they belong to the same base type. The simplest PListis called a singleton and consists of a single element; the singleton containing x iswritten as hx i. Let p:i, where 0 � i < n and n 2 Pos, be n pairwise similar PLists,each of length m. De�ne the PList u asu = [j i : i 2 n : p:i]u is obtained by concatenating the contents of the lists p:i in order, i.e., the jthelement of p:i appears as element i �m+ j of u. Similarly, the PList v de�ned byv = [./i : i 2 n : p:i]contains the interleaving of the contents of the lists p:i in order, i.e., the jth elementof p:i appears as element i+ j �m of v.Formally, the constructors have the following types:h i : X �! PList:X:1[j i : i 2 n : ] : (PList:X:m)n �! PList:X:(n �m)[./i : i 2 n : ] : (PList:X:m)n �! PList:X:(n �m)96
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PList AxiomsFor 0 � i < n and 0 � j < m (where n;m 2 Pos) let p:i:j 2 PList:X:k, i.e., p rangesover n �m similar PLists; let u:i; v:i 2 PList:X:k, and let x:i; a; b 2 X. The followingaxioms de�ne the PList algebra:(8t : t 2 PList:X:1 : (9 a :: t = hai)) (4.2)(8t : t 2 PList:X:(k�n) : (9 u :: t = [./i : i 2 n : u:i])) (4.3)(8t : t 2 PList:X:(k�n) : (9 u :: t = [j i : i 2 n : u:i])) (4.4)hai = hbi � a = b (4.5)[./i : i 2 n : u:i] = [./i : i 2 n : v:i] � (8i : 0 � i < n : u:i = v:i) (4.6)[j i : i 2 n : u:i] = [j i : i 2 n : v:i] � (8i : 0 � i < n : u:i = v:i) (4.7)[./i : i 2 n : hx.ii] = [j i : i 2 n : hx.ii] (4.8)[./i : i 2 n : [jj : j 2m : p:i:j]] = [jj : j 2 m : [./i : i 2 n : p:i:j]] (4.9)Let the n-ary operator [\i : i 2 n : ] : Xn �! X and the unary operator �: X �! Xbe de�ned on the scalars of p:i:j and x:i. We lift these operators to PLists in thefollowing way: � hai = h�ai (4.10)� [j i : i 2 n : u:i] = [j i : i 2 n :�u:i] (4.11)� [./i : i 2 n : u:i] = [./i : i 2 n :�u:i] (4.12)[\i : i 2 n : hx.ii] = h[\i : i 2 n : x:i]i (4.13)[\i : i 2 n : [jj : j 2 m : p:i:j]] = [jj : j 2 m : [\i : i 2 n : p:i:j]] (4.14)[\i : i 2 n : [./j : j 2 m : p:i:j]] = [./j : j 2 m : [\i : i 2 n : p:i:j]] (4.15)Note that only one of (4.11) and (4.12) and one of (4.14) and (4.15) are needed; foreach pair one equation follows from the other.97
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Let permute be a permutation function on PLists. For n (n 2 Pos) similarPLists q:i where 0 � i < n we have:permute:(� p) = � permute:p (4.16)permute:[\i : i 2 n : q:i] = [\i : i 2 n : permute:(q:i)] (4.17)4.1.1 Scalar Data StructuresWe use linear lists to describe the arities that apply in de�nitions of functions overPLists. In this section we de�ne linear lists, as well as strings and sets; these datastructures are used in de�ning the connection networks of Section 4.3.Linear ListsWe use the type function List : Type �! Typeto construct the type of linear lists over a data type. The empty list is denoted by[ ]. For an element x 2 X and a list l 2 List:X we write x .l for the list that has x asits head and l as its tail, and we write l/ x for the list that has x as its last elementand l as its beginning1. When convenient, we use the notation [x] for the list thatcontains the single element x.Since we will primarily use linear lists over positive natural numbers, weintroduce the name PosList as an abbreviation for List:Pos. We de�ne the functionprod that computes the product of the elements of a linear list in PosList, i.e.,prod : PosList �! Pos: prod:[ ] = 1 (4.18)prod:(x .l) = x � prod:l (4.19)1We have overloaded the operators . and / from the ParList notation. This is intentional, sincethe ParList theory can be viewed as a uni�cation of the PowerList and linear list theories.98
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We also de�ne the function linrev : List:X �! List:X that reverses a linear list:linrev:[ ] = [ ] (4.20)linrev:(x .l) = linrev:l/ x (4.21)StringsWe use strings to label the nodes of the connection networks in Section 4.3. The typeof strings from an unspeci�ed alphabet is called String. We write the concatenationof the n strings s:i, for 0 � i < n, by [++ i : i 2 n : s:i], using the generalizednotation described above. In the special case of n = 2 we use the in�x versionof the operator, i.e., s++ t is the concatenation of the strings s and t; we have[++ i : i 2 n : ] : Stringn �! String .If s is a string and i is a natural number, then s�i (read s \tag" i) is thestring obtained by concatenating s with a string representation of the number i. Wehave � : String� Nat �! String. We recall that � has a higher binding power than++ .SetsThe elements of a PList can be regarded as a set; this is useful when we prove isomor-phisms between network topologies. We use the type Set.X to denote the type of setswhose elements are in X. We de�ne the \setify" operator f g : PList:X:n �! Set:Xas follows: f hx ig = fxg (4.22)f [./i : i 2 n : u:i]g = ([i : 0 � i < n : fu:ig) (4.23)f [j i : i 2 n : u:i]g = ([i : 0 � i < n : fu:ig) (4.24)
99
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Note that only one of (4.23) and (4.24) is needed, as one can be proven from theother. Letting permute be a permutation function on PLists, we havefpermute:pg = fpg (4.25)4.2 Functions over PListsFunctions over PLists are de�ned using two arguments. The �rst argument is a listof arities, and the second is the argument PList. Functions over PLists are onlyde�ned for certain pairs of these input values; to express the valid pairs we requirethat the speci�cation of the function de�nes the predicatede�ned : ((List� PList) �! X)� List� PList �! Boolto characterize where the function is de�ned. We only write properties of func-tions where they are de�ned and it becomes a proof obligation to ensure that theintroduced terms are well de�ned.We illustrate this convention by de�ning the function sum, which computesthe sum of all elements of a PList over a type where + is de�ned:de�ned:sum:l:p � prod:l = length:p (4.26)sum:[ ]:hai = a (4.27)sum:(x .l):[j i : i 2 x : p:i] = (+i : 0 � i < x : sum:l:(p:i)) (4.28)An example of applying sum is:sum:[5]:�j i : i 2 5 : hii�= f sum (4.28) g(+i : 0 � i < 5 : sum:[ ]:hii)= f sum (4.27) g(+i : 0 � i < 5 : i) 100
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= f arithmetic g0 + 1 + 2 + 3 + 4= f arithmetic g10Note that if we instantiate sum with a PowerList p and a linear list consisting ofloglen.p 2's, we have a function that is the same as the function sum de�ned forPowerList in Chapter 2. This observation will hold for most PList functions, althoughthe predicate de�ned can in principle be written in such a way that the functionis unde�ned for some or all PowerLists. All of the PList functions de�ned in thischapter can be specialized to PowerList functions.4.2.1 An Induction Principle for PListsFunctions over PLists are de�ned by structural induction over two structures, PosListand PList, where the valid pairs are determined by de�ned. We can de�ne twoequally valid induction principles for PLists, one based on each of these structures.We present the inductive principle over PosList below. Let� : PosList� PList:X:n �! Boolbe a predicate whose truth is to be established for all pairs of PosList and PListsover X where the function applications are de�ned. We de�ne the predicatevalid : (PosList� PList:X:n �! Bool)� PosList� PList:X:n �! Bool
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to characterize these pairs. We can establish the predicate � by the followinginduction principle:(8p : p 2 PList:X:n ^ valid:�:[ ]:p : �:[ ]:p)^ ( (8p; q; l : p 2 PList:X:n ^ q 2 PList:X:m ^ l 2 PosList :(valid:�:l:p ) �:l:p) ) (valid:�:(x .l):q ) �:(x .l):q) )_ (8p; q; l : p 2 PList:X:n ^ q 2 PList:X:m ^ l 2 PosList :(valid:�:l:p ) �:l:p) ) (valid:�:(l/ x):q ) �:(l/ x):q) ) )) (8p; l : p 2 PList:X:n ^ l 2 PosList : valid:�:l:p ) �:l:p)We do not give explicit formulations of valid in proofs of properties, but wedo state relevant consequences of valid. All formulas we write in proofs satisfy valid,given the assumptions made in the context.4.2.2 Permutation Functions in PListsWe continue by de�ning four permutation functions over PLists. We will only useone of them (inv) in our treatment of the permutation networks. The others areincluded since they illustrate how PLists can be used to reason algebraically aboutmixed-radix representations.The permutation function inv : PosList� PList:X:n �! PList:X:n generalizesthe PowerList function inv to PLists. Operationally, inv maps an element of a PListwhose position can be written as a string of digits in a mixed-radix notation to aposition that can be written as the reverse of the string.de�ned:inv:l:p � prod:l = length:p (4.29)inv:[ ]:hai = hai (4.30)inv:(x .l):[j i : i 2 x : p:i] = [./i : i 2 x : inv:l:(p:i)] (4.31)102
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Two interesting properties of inv are:inv:(l/ x):[./i : i 2 x : p:i] = [j i : i 2 x : inv:l:(p:i)] (4.32)inv:l:(inv:(linrev:l):p) = p (4.33)Proof of (4.32), base caseinv:[x]:[./i : i 2 x : ha:ii]= f Axiom (4.8) ginv:[x]:[j i : i 2 x : ha:ii]= f inv (4.31) g[./i : i 2 x : inv:[ ]:ha:ii]= f inv (4.30) g[./i : i 2 x : ha:ii]= f Axiom (4.8) g[j i : i 2 x : ha:ii]= f inv (4.30) g[j i : i 2 x : inv:[ ]:ha:ii]Inductive step:inv:((y .l)/ x):[./i : i 2 x : [jj : j 2 y : p:i:j]]= f Axiom (4.9) ginv:((y .l)/ x):[jj : j 2 y : [./i : i 2 x : p:i:j]]= f inv (4.31) g[./j : j 2 y : inv:(l/ x):[./i : i 2 x : p:i:j]]= f induction hypothesis (4.32) g[./j : j 2 y : [j i : i 2 x : inv:l:(p:i:j)]]= f Axiom (4.9) g[j i : i 2 x : [./j : j 2 y : inv:l:(p:i:j)]]= f inv (4.31) g[j i : i 2 x : inv:(y .l):[./j : j 2 y : p:i:j]]103
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End of ProofProof of (4.33), base case omitted. Inductive step:inv:(x .l):(inv:(linrev:(x .l)):[./i : i 2 x : p:i])= f linrev (4.21) ginv:(x .l):(inv:(linrev:l/ x):[./i : i 2 x : p:i])= f result above (4.32) ginv:(x .l):[j i : i 2 x : inv:(linrev:l):(p:i)]= f inv (4.31) g[./i : i 2 x : inv:l:(inv:(linrev:l):(p:i))]= f induction (4.33) g[./i : i 2 x : p:i]End of ProofNote that we omitted any reference to the de�nedness of expressions in the proofabove, since this property is simple to check. In Section 4.3.4 we will see proofswhere these proof obligations are non-trivial, and hence are not omitted.Next, we de�ne the function rev : PList:X:n �! PList:X:n that reverses theorder of the elements of a PList:de�ned:rev:l:p � prod:l = length:p (4.34)rev:[ ]:hai = hai (4.35)rev:(y .l):[j i : i 2 y : p:i] = [j i : i 2 y : rev:l:(p:(y�(i+1)))] (4.36)As in the case of PowerList; (4.36) can be replaced by:rev:(y .l):[./i : i 2 y : p:i] = [./i : i 2 y : rev:l:(p:(y�(i+1)))] (4.37)There is an interesting relationship between rev and inv:rev:l:(inv:(linrev:l):p) = inv:(linrev:l):(rev:l:p) (4.38)104
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Proof By induction over the length of l. Base case:rev:[ ]:(inv:(linrev:[ ]):hai) = inv:(linrev:[ ]):(rev:[ ]:hai)� f linrev (4.20) grev:[ ]:(inv:[ ]:hai) = inv:[ ]:(rev:[ ]:hai)� f inv (4.30); rev (4.35) grev:[ ]:hai = inv:[ ]:hai� f rev (4.35); inv (4.30) ghai = haiInductive step:rev:(y .l):(inv:(linrev:(y .l):[./i : i 2 y : p:i]))= f linrev (4.21) grev:(y .l):(inv:(linrev:l/ y):[./i : i 2 y : p:i])= f inv (4.32) grev:(y .l):[j i : i 2 y : inv:(linrev:l):(p:i)]= f rev (4.36) g[j i : i 2 y : rev:l:(inv:(linrev:l):(p:(y�(i+1))))]= f induction (4.38) g[j i : i 2 y : inv:(linrev:l):(rev:l:(p:(y�(i+1))))]= f inv (4.32) ginv:(linrev:l/ y):[./i : i 2 y : (rev:l:(p:(y�(i+1))))]= f rev (4.37) ginv:(linrev:l/ y):rev:(y .l):[./i : i 2 y : p:i]= f linrev (4.21) ginv:(linrev:(y .l)):rev:(y .l):[./i : i 2 y : p:i]End of ProofNext, we de�ne two permutation functions that are inverses of one another:rir and ril. These functions are are similar to inv since they permute the elements105
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of a PList according to their mixed-radix representation as speci�ed by the givenlist of arities. The function rir : PosList� PList:X:n �! PList:X:n is de�ned by:de�ned:rir:l:p � prod:l = length:p (4.39)rir:[ ]:hai = hai (4.40)rir:(l/ y):[./i : i 2 y : p:i] = [j i : i 2 y : p:i] (4.41)Operationally, rir:l:p permutes an element of p whose position can be written in amix-radix representation where the radices are speci�ed by l, to a position that isobtained by rotating the representation one position to the right. The inverse to riris ril : PList:X:n �! PList:X:n, which is speci�ed by:de�ned:ril:l:p � prod:l = length:p (4.42)ril:[ ]:hai = hai (4.43)ril:(y .l):[j i : i 2 y : p:i] = [./i : i 2 y : p:i] (4.44)Operationally, ril is similar to rir except that it rotates the representation to theleft.The fact that ril and rir are inverses is simple to prove:ril:l:(rir:(linrev:l):p) = p (4.45)Proof Over the structure of l. Case [ ]ril:[ ]:(rir:(linrev:[ ]):hai)= f linrev (4.20) gril:[ ]:(rir:[ ]:hai)= f rir (4.40) gril:[ ]:hai= f ril (4.43) ghai 106
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Case y .l :ril:(y .l):(rir:(linrev:(y .l):[./i : i 2 y : p:i]))= f linrev (4.21) gril:(y .l):(rir:(linrev:l/ y):[./i : i 2 y : p:i])= f rir (4.41) gril:(y .l):[j i : i 2 y : p:i]= f ril (4.44) g[./i : i 2 y : p:i]End of ProofIt is possible to generalize the PowerList functions rr and rl and the PowerList opera-tors ! and to PLists. We omit their de�nitions since they require manipulationsof the indices of the generalized notations.4.3 Interconnection NetworksIn this section we describe four interconnection networks. These networks can becon�gured to realize the routing from input nodes to output nodes speci�ed by anypermutation. First, we describe binary networks where the nodes are 2� 2 switches(i.e., they have arity 2) as PowerList functions, and prove that the four networksare isomorphic. The PowerList functions are then generalized to PList functionsdescribing generalized networks, where the nodes in each column have the same,positive arity, but nodes in di�erent columns may have di�erent arities. Based onthese speci�cations we prove that the generalized networks are isomorphic, by liftingthe PowerList proofs to corresponding PList proofs.
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4.3.1 Binary Interconnection NetworksAn interconnection network of size 2n, where n 2 Pos, has n + 1 stages numbered0 through n (the stages will appear in increasing order from left to right in the�gures). Each stage has 2n nodes; nodes in stage 0 are initial nodes and those instage n are �nal nodes. Each non-initial node has two input ports, known as topand bottom. Each non-�nal node has two output ports known as top and bottom. Anode has the property that the values on the input ports either pass through to thesame output ports, or they are exchanged2. This node behavior can be controlledby an external routing protocol. The output ports of nodes in stage i are connectedto the input ports of nodes in stage i + 1, 0 � i < n. Examples of interconnectionnetworks are the buttery, iterative and recursive networks3. Each of these, e.g.,the buttery network, actually denotes a family of networks where each member ofthe family has a number of input ports equal to a di�erent value of 2n.We describe the structure of a family of networks by a PowerList function.These functional descriptions can be used to prove that the di�erent network familiesare isomorphic.Examples of NetworksFirst, we consider an interconnection network that we call the iterative networkbecause the connections are identical from stage to stage. The network for 2n = 4is shown in Figure 4.1. In stage 1, the top lines of the stage come in order from theupper half of the previous stage and all the bottom lines come from the lower half inorder. The connections for the remaining stages are the same as in the �rst stage.Next, we consider a recursive network, an interconnection network createdin a recursive fashion. For 2n = 1, the network is a single node. For 2n = 2, the2A node with this property is often called a switch in the literature.3We use the names iterative and recursive, since there does not seem to be a consistent usageof the names Benes, Clos, Waxman, Omega and Baseline for these networks in the literature.108
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Figure 4.1: An Iteratively Constructed Interconnection Network, 2n = 4
Figure 4.2: The Recursive Network for 2n = 2network is a buttery network with 2 stages, as shown in Figure 4.2. We show thegeneral construction scheme in Figure 4.3, for 2n = 4. In stage 1, all the lines inthe top half are the top output lines of the previous stage and all the lines in thebottom half come from the bottom lines in the previous stage, in order. Next, twocopies of the same network of the next smaller size, for 2n = 2, are appended to theupper and lower halves.A buttery network of size n, where 2n = 2 is shown in Figure 4.2, thebuttery network of size 2n = 4 is shown in Figure 4.4 and the buttery network ofsize 2n = 8 is shown in Figure 4.5. The interconnection structure can be describedas follows. The initial nodes in the upper half have their top lines connected to thetop lines in the upper half of the next stage and their bottom lines connected to109
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Figure 4.3: The Recursive Network, 2n = 4the top lines of the bottom half of the next stage, in order. The connections for thebottom half of the initial nodes are analogous.The mirror image of the buttery network for 2n = 8 is shown in Figure 4.6.4.3.2 Describing the Binary Networks in PowerListWe adopt the following scheme to describe the structure of a network. Name eachnode in stage 0 by a distinct character from some alphabet. For a node named b,name its top outgoing edge b�0 and its bottom outgoing edge b�1. A node whosetop (respectively, bottom) incoming edge is named b (respectively, c), is assignedb++ c as its name. Thus, in Figure 4.7, given that the nodes in stage 0 are nameda; b; c; d from top to bottom, the other nodes are named as shown. It is clear thatgiven the PowerList of names for the nodes in stage 0, all the node and edge namesare determined. Further, given the PowerList of node names at the last stage, itis possible to reconstruct the names assigned to all the nodes and edges and theirinterconnections.We describe the structure of a network by a function whose argument is a110



www.manaraa.com

Figure 4.4: Buttery Network for 2n = 4

Figure 4.5: Buttery Network for 2n = 8
111
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Figure 4.6: Mirror Image of the Buttery NetworkPowerList of names, to be assigned in sequence to the nodes in stage 0, and whoseresult is a PowerList of the names assigned to the nodes in the last stage of thenetwork. The networks are described by the functions, iter, rec, but and tub, withthe following types:iter : Nat� PowerList:String:n �! PowerList:String:nrec : PowerList:String:n �! PowerList:String:nbut : PowerList:String:n �! PowerList:String:ntub : PowerList:String:n �! PowerList:String:nNote that the iterative nature of iter is described by its �rst argument, which denotesthe number of stages in the network. The term iter:(loglen:p):p describes the labelsin the last stage of the iterative network, with p describing the labels in stage 0.The functions are de�ned as follows: 112
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a1c11b1d11

a1c10b1d10

a0c01b0d01

a0c00b0d00a0c0

a1c1

b0d0

b1d1d

c

b

a

Figure 4.7: Naming the Nodes in a NetworkIterative Network iter:0:p = p (4.46)iter:(k + 1):(p j q) = iter:k:(p�0++ q�0 ./ p�1++ q�1) (4.47)Recursive Networkrec:hai = hai (4.48)rec:(p ./ q) = rec:(p�0++ q�0) j rec:(p�1++ q�1) (4.49)Buttery Networkbut:hai = hai (4.50)but:(p j q) = but:(p�0++ q�0) j but:(p�1++ q�1) (4.51)Mirror Buttery Networktub:hai = hai (4.52)tub:(p ./ q) = tub:(p�0++ q�0) ./ tub:(p�1++ q�1) (4.53)113
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The PowerList representation is useful when we wish to concatenate di�er-ent networks; functional composition corresponds to network concatenation. Thelabeling in Figure 4.7 is obtained byiter:2:ha b c di= f iter (4.47) giter:1:ha0c0 a1c1 b0d0 b1d1i= f iter (4.47) giter:0:ha0c00b0d00 a0c01b0d01 a1c10b1d10 a1c11b1d11i= f iter (4.46) gha0c00b0d00 a0c01b0d01 a1c10b1d10 a1c11b1d11i4.3.3 Equivalence Between the Binary NetworksWe �rst prove that the recursive network is isomorphic to the buttery:rec � inv = but (4.54)Proof of (4.54). Base case omitted. Inductive step:rec:(inv:(p j q))= f inv (4.31) as de�ned in Chapter 2 grec:(inv:p ./ inv:q)= f rec (4.49) grec:(inv:p�0++ inv:q�0) j rec:(inv:p�1++ inv:q�1)= f inv is a permutation function (4.17) grec:(inv:(p�0)++ inv:(q�0)) j rec:(inv:(p�1)++ inv:(q�1))= f inv is a permutation function (4.17) grec:(inv:(p�0++ q�0)) j rec:(inv:(p�1++ q�1))= f induction (4.54) gbut:(p�0++ q�0) j but:(p�1++ q�1)= f but (4.51) g 114
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but:(p j q)End of ProofNext, we prove that the recursive network is isomorphic to the mirror buttery:rec = inv � tub (4.55)Proof of (4.55). Base case omitted. Inductive step:inv:(tub:(p ./ q))= f tub (4.53) ginv:(tub:(p�0++ q�0) ./ tub:(p�1++ q�1))= f inv (4.31) as de�ned in Chapter 2 ginv:(tub:(p�0++ q�0)) j inv:(tub:(p�1++ q�1))= f induction (4.55) grec:(p�0++ q�0) j rec:(p�1++ q�1)= f rec (4.49) grec:(p ./ q)End of ProofIt is an immediate consequence of (4.54) and (4.55) thatbut � inv = inv � tub (4.56)To enable us to prove that the iterative network is isomorphic to the other networkswe need the following lemma that gives a recursive structure de�nition of the labelsin an iterative network:Lemma 13k � loglen:p ) f iter:k:(p ./ q)g = f iter:k:pg S f iter:k:qg (4.57)115
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Proof of (4.57) by induction on k. Base case k = 0f iter:0:(p ./ q)g = f iter:0:pg S f iter:0:qg� f iter (4.46) gfp ./ qg = fpg S fqg� f f g (4.23) gtrueinductive step: (we have (4.60) below)f iter:(k + 1):((p j q) ./ (u j v))g= f Axiom (3.20) gf iter:(k + 1):((p ./ u) j (q ./ v))g= f iter (4.47) gf iter:k:(((p ./ u)�0++ (q ./ v)�0) ./ ((p ./ u)�1++ (q ./ v)�1))g= f � is a scalar operator (2.15) gf iter:k:((p�0 ./ u�0)++ (q�0 ./ v�0) ./ (p�1 ./ u�1)++ (q�1 ./ v�1))g= f induction (4.57) see (4.58) below gf iter:k:((p�0 ./ u�0)++ (q�0 ./ v�0))gSf iter:k:((p�1 ./ u�1)++ (q�1 ./ v�1))g= f ++ is scalar (2.15) gf iter:k:((p�0++ q�0) ./ (u�0++v�0))gSf iter:k:((p�1++ q�1) ./ (u�1++ v�1))g= f induction (4.57) see (4.59) below gf iter:k:(p�0++ q�0)gSf iter:k:(u�0++ v�0)gSf iter:k:(p�1++ q�1)gSf iter:k:(u�1++v�1)g= f set union is symmetric gf iter:k:(p�0++ q�0)gSf iter:k:(p�1++ q�1)gSf iter:k:(u�0++ v�0)gSf iter:k:(u�1++v�1)g= f induction (4.57) see (4.59) below g116
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f iter:k:((p�0++ q�0) ./ (p�1++ q�1))gSf iter:k:((u�0++ v�0) ./ (u�1++ v�1))g= f iter (4.47) gf iter:(k + 1):(p j q)gSf iter:(k + 1):(u j v)gEnd of ProofIn the proof above we need to establish that the inductive hypothesis was appliedcorrectly: k � loglen:((p�0 ./ u�0)++ (q�0 ./ v�0)) (4.58)k � loglen:(p�b++ q�b) where b = 0 _ b = 1 (4.59)It is simple to show that these inequalities follow from the assumption(k + 1) � loglen:(p j q) (4.60)We can now prove the isomorphism between the iterative and the buttery networks:f iter:k:pg = fbut:pg where k = loglen:p (4.61)Proof of (4.61). Base case omitted. Inductive step: assume k + 1 = loglen:(p j q)f iter:(k + 1):(p j q)g= f iter (4.47) gf iter:k:(p�0++ q�0 ./ p�1++ q�1)g= f Lemma 13 (4.57) is applicable, see (4.62) below gf iter:k:(p�0++ q�0)gSf iter:k:(p�1++ q�1)g= f induction see (4.63) below gfbut:(p�0++ q�0)gSfbut:(p�1++ q�1)g= f f g (4.24) gfbut:(p�0++ q�0) j but:(p�1++ q�1)g= f but (4.51) gfbut:(p j q)g 117
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End of ProofIn the proof above the following properties were left unproven:k = loglen:p (4.62)k � loglen:(p�0++ q�0) (4.63)both follow from the assumption: k + 1 = loglen:(p j q).In summary we have proven that the iterative, recursive, buttery andmirror-buttery are isomorphic networks:Theorem 1 frec:pg = f tub:pgfbut:pg = frec:(inv:p)gfbut:pg = f iter:k:pg where k = loglen:pTheorem 1 follows from (4.54), (4.56), (4.61) and (4.25).4.3.4 Generalized NetworksThe generalized networks consists of stages, where a stage is constructed using nodesof the same arity. A node of arity m has the property that it can be con�gured torealize any permutation of the values on its m input wires to its m output wires.The networks may utilize di�erent arities in di�erent stages. It is the pattern usedin connecting the output wires from one stage of a network to the input wires of thenext stage that de�ne a particular network topology.4.3.5 Describing the Generalized Networks in PListsIn this section we describe the interconnection networks as PList functions of twoarguments. The �rst argument is a non-empty list (e.g., y.l) that describes the arity118
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Figure 4.8: Iterative Network with the Arities 2, 3 and 3
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Figure 4.9: Recursive Network with the Arities 2, 3 and 3119
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Figure 4.10: Buttery Network with the Arities 2, 3 and 3
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Figure 4.12: Mirror Buttery Network with the Arities 3, 3 and 2of the nodes in each column (e.g., y� y in the �rst row). The second argument is aPList of length prod:l consisting of distinct strings; this argument corresponds to alabeling of the boxes in the �rst column. The return value from such a function is aPList that corresponds to a labeling of the nodes in the last column. The scheme forlabeling nodes is a generalization of the scheme used in the binary case. The maindi�erence is that the outputs from a node of arity n are labeled 0 through n � 1.Figures 4.8 through 4.12 illustrate the generalized networks and the labeling con-vention. The PList functions that de�ne the generalized networks have the followingtypes: iter : PosList� PList:String:n �! PList:String:nrec : PosList� PList:String:n �! PList:String:nbut : PosList� PList:String:n �! PList:String:ntub : PosList� PList:String:n �! PList:String:n121



www.manaraa.com

These functions are de�ned by:Iterative Networkde�ned:iter:(y .l):p � length:p = prod:l (4.64)iter:[x]:hai = hai (4.65)iter:(x .(y .l)):[j i : i 2 y : p:i] = iter:(y .l):[./j : j 2 x : [++ i : i 2 y : (p:i)�j]](4.66)Recursive Networkde�ned:rec:(y .l):p � length:p = prod:l (4.67)rec:[x]:hai = hai (4.68)rec:(x .(y .l)):[./i : i 2 y : p:i] = [jj : j 2 x : rec:(y .l):[++ i : i 2 y : (p:i)�j]](4.69)Buttery Networkde�ned:but:(y .l):p � length:p = prod:l (4.70)but:[x]:hai = hai (4.71)but:(x .(y .l)):[j i : i 2 y : p:i] = [jj : j 2 x : but:(y .l):[++ i : i 2 y : (p:i)�j]](4.72)Mirror Buttery Networkde�ned:tub:(y .l):p � length:p = prod:l (4.73)tub:[x]:hai = hai (4.74)tub:(x .(y .l)):[./i : i 2 y : p:i] = [./j : j 2 x : tub:(y .l):[++ i : i 2 y : (p:i)�j]](4.75)122
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4.3.6 Equivalence Between the Generalized NetworksWe start by proving the isomorphism between the buttery and the recursive net-work. We prove this by showing that when the inputs to the recursive networkare permuted (using inv), then the resulting network is the same as the butterynetwork.Lemma 14 rec:(x .l):(inv:l:p) = but:(x .l):p where length:p = prod:l (4.76)Proof By induction over the length of l. Base case:rec:[x]:(inv:[ ]:hai)= f inv (4.30) grec:[x]:hai= f rec (4.68) ghai= f but (4.71) gbut:[x]:haiInductive step, length:[j i : i 2 y : p:i] = prod:(y .l):rec:(x .(y .l)):(inv:(y .l):[j i : i 2 y : p:i])= f inv (4.31) grec:(x .(y .l)):[./i : i 2 y : inv:l:(p:i)]= f rec (4.69) g[jj : j 2 x : rec:(y .l):[++ i : i 2 y : (inv:l:(p:i))�j]]= f inv over scalar operators (4.16, 4.17) g[jj : j 2 x : rec:(y .l):(inv:l:[++ i : i 2 y : (p:i)�j])]= f induction (4.76), length:(inv:l:[++ i : i 2 y : (p:i)�j]) = length:p:0 = prod:l g[jj : j 2 x : but:(y .l):[++ i : i 2 y : (p:i)�j]]= f but (4.72) g 123
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but:(x .(y .l)):[j i : i 2 y : p:i]End of ProofNext, we prove the isomorphism between the mirror buttery and the recursivenetwork:Lemma 15 tub:(x .l):p = inv:l:(rec:(x .l):p) where length:p = prod:l (4.77)Proof By induction over the length of l. Base case:inv:[ ]:(rec:[x]:hai)= f rec (4.68) ginv:[ ]:hai= f inv (4.30) ghai= f tub (4.74) gtub:[x]:haiInductive step length:[j i : i 2 y : p:i] = prod:(y .l):inv:(x .l):(rec:(x .(y .l)):[./i : i 2 y : p:i])= f rec (4.69) ginv:(x .l):[jj : j 2 x : rec:(y .l):[++ i : i 2 y : (p:i)�j]]= f inv (4.31) g[./j : j 2 x : inv:l:(rec:(y .l):[++ i : i 2 y : (p:i)�j])]= f induction (4.77), length:([++ i : i 2 y : (p:i)�j]) = length:p:0 = prod:l g[./j : j 2 x : tub:(y .l):[++ i : i 2 y : (p:i)�j]]= f tub (4.75) gtub:(x .(y .l)):[./i : i 2 y : p:i]End of Proof 124
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Combining Lemmas 14 and 15 we can prove the equivalence of the buttery and themirror-buttery networks:Lemma 16inv:(linrev:l):(tub:(x .l):p) = but:(x .l):(inv:(linrev:l):p) where length:p = prod:l(4.78)Proofbut:(x .l):(inv:(linrev:l):p)= f Lemma 14 (4.76) grec:(x .l):(inv:l:(inv:(linrev:l):p))= f property of inv (4.33) grec:(x .l):p= f property of inv (4.33) ginv:(linrev:l):(inv:l:(rec:(x .l):p))= f Lemma 15 (4.77) ginv:(linrev:l):(tub:(x .l):p)End of ProofWe proceed by proving the equivalence between the iterative and the butter-y networks. For each network we construct the set of labels at its �nal stage; thetwo networks are isomorphic when the two sets are equal. Before we can prove thisresult we need a lemma that establishes a property of the iterative network.Lemma 17f iter:(y .l):[./j : j 2 x : p:j]g = ([j : 0 � j < x : f iter:(y .l):(p:j)g)where length:(p:0) � prod:l (4.79)Proof Base Case length:ha.0 i � prod:[ ]125
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f iter:[y]:[./j : j 2 x : ha.j i]g= f iter (4.65) gf [./j : j 2 x : ha.j i]g= f de�nition f g (4.23) g([j : 0 � j < x : fha.j ig)= f iter (4.65) g([j : 0 � j < x : f iter:[y]:ha.j ig)Inductive step, where y � length:(p:0:j) � prod:(y .l)f iter:(z .(y .l)):[./j : j 2 x : [j i : i 2 y : p:i:j]]g= f Axiom (4.9) gf iter:(z .(y .l)):[j i : i 2 y : [./j : j 2 x : p:i:j]]g= f iter (4.66) gf iter:(y .l):[./k : k 2 z : [++ i : i 2 y : [./j : j 2 x : p:i:j]�k]]g= f commutativity of �k and [./i : i 2 y : ] (4.12) gf iter:(y .l):[./k : k 2 z : [++ i : i 2 y : [./j : j 2 x : (p:i:j)�k]]]g= f induction, see (4.81) below g([k : 0 � k < z : f iter:(y .l):[++ i : i 2 y : [./j : j 2 x : (p:i:j)�k]]g)= f commutativity [++ i : i 2 y : ] and [./j : j 2 x : ] (4.15) g([k : 0 � k < z : f iter:(y .l):[./j : j 2 x : [++ i : i 2 y : (p:i:j)�k]]g)= f induction, see (4.82) below g([k : 0 � k < z : ([j : 0 � j < x : f iter:(y .l):[++ i : i 2 y : (p:i:j)�k]g))= f set union commutes g([j : 0 � j < x : ([k : 0 � k < z : f iter:(y .l):[++ i : i 2 y : (p:i:j)�k]g))= f induction see (4.83) below g([j : 0 � j < x : f iter:(y .l):[./k : k 2 z : [++ i : i 2 y : (p:i:j)�k]]g)= f iter (4.66) g([j : 0 � j < x : f iter:(z .(y .l)):[j i : i 2 y : p:i:j]g)126
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End of ProofThe inductive assumption in the proof above is equivalent tolength:(p:0:j) � prod:l (4.80)from which the following inequalities used in the proof above can be provenlength:[++ i : i 2 y : [./j : j 2 x : (p:i:j)�0]] � prod:l (4.81)length:[++ i : i 2 y : (p:i:0)�l] � prod:l (4.82)length:[++ i : i 2 y : (p:i:j)�0] � prod:l (4.83)We only prove (4.81), as the proofs of the others are similarProoflength:[++ i : i 2 y : [./j : j 2 x : (p:i:j)�0]]= f Property of [++ i : i 2 y : ] glength:[./j : j 2 x : (p:i:j)�0]= f Property of [./j : j 2 x : ] and � gx � length:(p:0:0)� f x > 0 glength:p:0:0� f inductive hypothesis (4.80) gprod:lEnd of ProofWe are now ready to prove the equivalence between the iterative and the butterynetworks:Lemma 18 f iter:(x .l):pg = fbut:(x .l):pg where length:p = prod:l (4.84)127
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Proof Induction over the length of l. Base case:f iter:[x]:haig= f iter (4.65) gfhaig= f but (4.71) gfbut:[x]:haigInductive step, where length:[j i : i 2 y : p:i] = prod:(y .l)f iter:(x .(y .l)):[j i : i 2 y : p:i]g= f iter (4.66) gf iter:(y .l):[./j : j 2 x : [++ i : i 2 y : (p:i)�j]]g= f Lemma 17, see 4.85 below g([j : 0 � j < x : f iter:(y .l):[++ i : i 2 y : (p:i)�j]g)= f induction length:(p:i)�j = prod:(y .l) g([j : 0 � j < x : fbut:(y .l):[++ i : i 2 y : (p:i)�j]g)= f de�nition of f g (4.24) gf [jj : j 2 x : but:(y .l):[++ i : i 2 y : (p:i)�j]]g= f but (4.72) gf [jj : j 2 x : but:(x .(y .l)):[j i : i 2 y : p:i]]gEnd of ProofIn the proof above we usedlength:[++ i : i 2 y : (p:i)�0] � prod:l (4.85)which follows from length:[j i : i 2 y : p:i] = prod:(y .l).Theorem 2 de�ned:but:l:p � de�ned:iter:l:p (4.86)de�ned:but:l:p � de�ned:rec:l:p (4.87)128
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de�ned:but:l:p � de�ned:tub:l:p (4.88)fbut:l:pg = f iter:l:pg (4.89)fbut:l:pg = frec:l:(inv:l:p)g (4.90)frec:l:pg = f tub:l:pg (4.91)Equations (4.86), (4.87) and (4.88) follow by inspection, (4.89) follows from Lemma18, (4.90) follows from Lemma 14 and (4.91) follows from Lemma 16.4.4 SummaryMost of the permutation functions that we de�ned for PowerLists in Chapter 2 havethe property that they correspond to simple manipulations on the binary repre-sentation of the position of elements of a PowerList. One of the advantages of thePowerList notation is that it provides a layer of abstraction that is higher than thatof the indices of elements in a PowerList. The PList theory extends this correspon-dence to number systems in radix n for any n 2 Pos, allowing divide and conquersolutions that break large problems into more than two subproblems.In this chapter we described four binary interconnection networks by PowerListfunctions, and their generalized counterparts were described by PList functions. Wewere able to prove that the four network are isomorphic using algebraic techniques.As far as the author knows this has not been achieved in the literature. None of theproofs used indexing notations4 and although the labeling we use can be thoughtof as a \coding" of indices, we have con�ned ourselves to algebraic reasoning aboutthese labels.The PList notation is very rich. It includes the PowerList theory as a specialcase. While this generality is not always needed in order to describe parallel com-putations, it may prove useful when the problem is stated in a di�erent radix than4This work was inspired by a paper by McIlroy and Savicki [MS97] where similar results wereproven using index-based notations. 129
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2, or in a mixed radix as in the case of the generalized networks discussed in thischapter.

130



www.manaraa.com

Chapter 5
Conclusion

We start this chapter by surveying related research and comparing it to the workpresented in this dissertation. Then, we present future directions for research build-ing on top of this work. We conclude the chapter by commenting on the lessonslearned from developing and studying the three data structures.5.1 Related WorkIn this section we start by surveying the PowerList literature and proceed by survey-ing the related work done on other functional approaches to parallel programming.Finally, we present work that is related to PowerLists, but use a di�erent approach.5.1.1 PowerListsThe work presented in this dissertation is an extension of the work done on PowerListsdeveloped by Misra. Misra [Mis94] presented the PowerList theory along with anumber of fundamental parallel algorithms, such as Batcher's two sorting networks,the Fast Fourier Transform and two algorithms for the Pre�x Sum; Misra alsopresented a theory for generalizing the notation to multidimensional PowerLists. We131
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address the issue of multidimensional extensions of the three structures in Section5.2. Adams [Ada94] derived and veri�ed two addition circuits in PowerLists in arigorous manner. We extended his main results to ParLists in Section 3.4, but didnot include the proofs of the lemmas that Adams introduced in order to prove theequivalence of the circuits. Using a similar framework, Adams [Ada95] presented aPowerList description of a multiplication circuit.Many basic results of the PowerList theory, as presented in [Mis94], andmany of Adam's results have been mechanically veri�ed by Kapur and Subramaniam[KS95, KS96a, KS96b] using the inductive theorem prover Rewrite Rule Laboratory.Gamboa [Gam97] has veri�ed many fundamental results about PowerLists using theACL2 theorem prover. His work focuses on the veri�cation of Batcher's sortingnetworks as found in [Mis94].The use of mechanical veri�cation has been valuable for the PowerList re-search. Many of the basic properties of PowerLists have been mechanically veri�edin a more rigorous way than in the original proofs generated by humans. This rigoris achieved by the use of theorem provers which require that all data structures andapplied methods be axiomatized before a proof that utilizes them can be completed.The PowerList data structure has been an interesting challenge for the theorem-proving community [Kap94]. The constructors are partial, since they require thattheir arguments have the same length, and a non-singleton PowerList can be con-structed using either ./ and j. Another complication for automated theorem proversposed by the PowerList theory is the use of two constructors. The current researchhas dealt with this issue by regarding one constructor as fundamental and the otheras a derived operator. However, as seen in this dissertation, the equal treatment ofthe two constructors is one of the strengths of the PowerList theory. It is unfortunatethat this symmetry does not carry over to automated approaches.132
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In [AS96] Aschatz and Schulte present rules to transform PowerList func-tions to programs with sequential work ows, aiming at an e�cient implementationon a Wavetracer machine1. Their approach is somewhat unusual: they transformPowerList descriptions into an intermediate language based on skeletons [Col89],thereby eliminating most of the structure that is present in the PowerList descrip-tions. These skeleton descriptions are then transformed into the programming lan-guage multiC [Wav92] that can be compiled for the Wavetracer architecture.5.1.2 Functional Parallel ProgrammingIverson developed the programming language APL [Ive62] based on the idea of ap-plying a single operation to each element of a data structure. APL is a rich languagewith many operators that allow complex algorithms to be expressed succinctly. Thetheories presented in this dissertation have been developed with this goal in mind,while keeping the number of built-in operators to a minimum.Some very convincing arguments for functional parallel programming weremade by Backus in his Turing Award lecture [Bac78]. Backus proposed the paral-lel functional language FP, based on the use of second-order functions (functionals,like reduce and map de�ned for PowerLists in Section 2.1) that manipulate basicfunctions over linear lists. Basic functions are either data movement functions sim-ilar to the ones we de�ned for PowerLists in Section 2.1.2 or scalar functions. FPis equiped with an algebra that enables equality preserving transformations of FPfunctions. With FP Backus provided the insight that it is just as important tofacilitate expressing what a parallel program should do, as expressing its executionon a (parallel) architecture.A main di�erence between FP and the structures that we have presented inthis dissertation is that FP lists are linear, i.e., they are accessed using / and . -like1A Single Instruction Multiple Data (SIMD) 3-dimensional mesh architecture.133
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operators. Parallelism in FP is introduced by evaluating the second order functionsin parallel.Mou and Hudak [MH88, Mou90] presented Divacon, a very general func-tional notation for describing divide-and-conquer programs. The Divacon notationis meant to capture the entire class of divide-and-conquer algorithms. The em-phasis of their work is to implement divide-and-conquer descriptions e�ciently onparallel architectures, and to demonstrate that these implementations are e�cient.By restricting the Divacon notation to certain patterns, Mou and Hudak presentedimplementation strategies for certain architectures, such as hypercubes and meshoriented architectures. No algebra or formal tools were provided to prove the cor-rectness of Divacon programs or to transform one description into another. Forthese reasons it would be di�cult to prove the kind of properties we have proven inthis dissertation.Guy Blelloch developed and implemented the functional programming lan-guage NESL [Ble95]. The language is based on nested parallelism over linear lists:NESL functions can be applied to lists that may in turn contain lists as elements.PowerLists as presented in [Mis94] do support this notion of nested parallelism.NESL lists are dynamic in length, and in contrast with PowerLists there are no re-strictions on the lengths of lists that are returned from functions. This enables aNESL description of a parallel version of Quicksort, where the recursive calls can beof unequal lengths as determined by the values of the input list and the chosen pivotelement. It does not appear that this algorithm can be expressed elegantly in thestructures presented in this dissertation. NESL was designed to produce e�cientimplementations of parallel algorithms on actual architectures and to reason abouttheir theoretical complexity measures. Little consideration was given to providinga framework to prove NESL programs correct.The programming language Sisal [MSA+85] is a functional, parallel program-134
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ming language designed for e�cient compilations to existing parallel architectures.The goal behind the language is to provide programmers with an alternative toFortran yielding more e�cient implementations than optimizing Fortran compilerscan provide [Can92]. Sisal is based on the idea of single assignment variables, i.e.,a \variable" that is either unde�ned or, if it attains a value, then its value does notchange in the remainder of the computation. Computations that expect a variableto have a value are suspended until the variable gets a value; thus it is possible toavoid many race conditions2. Sisal was designed to produce e�cient implementa-tions; as a result, a number of \features" of other parallel functional language aremissing, such as higher order functions and built-in permutations. These featureswere included in the proposal for a new version of the language [BCFO91] that hasnot yet been implemented. In comparison to PowerList it is interesting to observethat the fundamental data structure in Sisal is non-empty arrays. While Sisal pro-grams are more concise than corresponding Fortran programs, they are not easilyamenable to formal proofs of correctness due to extensive use of indexing notations.5.1.3 Bird-Meertens FormalismThe Bird-Meertens formalism [Bir89, Mee86, Ski94] has its roots in FP, but is moregeneral since it applies to a number of di�erent categorical data types [Mal90], includ-ing linear lists. In the following we present a simple version of the formalism basedon linear lists (constructed with the concatenation operator } ), basic functionsand higher order functions. The key concept in the formalism is a list homomor-phism, an algebraic property that a function (say h) over lists has if it \respects"list construction, i.e.: h:(p} q) = h:p 
 h:q (5.1)2The concept of single assignment is also used in PCN [CT89, CT90], a notation for parallelcomposition of sequential programs. 135
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for some associative operator 
. The functions sum, reduce and map are all exam-ples of homomorphisms. A homomorphism like h above satis�es the following law3[Bir89]: h = reduce:
 � map:f where f:a = h:[a] (5.2)and can be implemented in time proportional to the logarithm of the length of thelist on most parallel architectures [Ski94, Gor96].The Bird-Meertens formalism is very rich, providing many interesting resultsabout functions over linear lists. Most of these results can be reused in the theorieswe presented in this dissertation, since the data structures can be viewed as linearlists by ignoring the way they were constructed. The Bird-Meertens formalism ismore abstract than the theories we presented, allowing the programmer to work ata very high level of abstraction. However, such a high level of abstraction may alsodeter the programmer from coming up with e�cient solutions since most reasoningis done with higher order functions.Gorlatch [Gor96] adapted the Bird-Meertens formalism towards PowerListsby restricting list concatenation to lists of the same length. He categorized a class offunctions called distributable homomorphisms that includes the pre�x sum. He thenshowed that this class has an e�cient implementation on hypercubic architectures,using a technique similar to the one we derived for the pre�x sum algorithm onhypercubes in Section 2.4.1.5.1.4 Other Models for Parallel ProgrammingAscend and Descend AlgorithmsPreparata and Vuillemin [PV81] presented the cube-connected-cycles (CCC) a net-work that has many of the topological properties of a hypercube, with only a con-stant number of neighbors for each node. The n-dimensional CCC can be con-3Where reduce and map are similar to the PowerList functions de�ned in Section 2.1.136
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structed from an n-dimensional hypercube by replacing each hypercube node witha ring of n nodes. The n incident edges to a hypercube node are assigned in theirdimensional order to the nodes in the corresponding ring on the CCC. Thus, eachnode on the CCC has degree 3. The CCC and the buttery networks have very sim-ilar topologies [Lei92] and both can simulate hypercube algorithms e�ciently. Werecall from Section 1.3 that H:f:n is the time that it takes to evaluate function f oninputs of length 2n on a hypercube; similarly, we de�ne B:f:n as a measure for simu-lating the function on a buttery (or CCC), this can be done with a polylogarithmicslowdown: B:f O (�n :: n2) �H:fAn even more important result in [PV81] is the classi�cation of the group ofdivide-and-conquer algorithms called Ascend and Descend, that in PowerList corre-spond closely to deconstruction arguments with ./ and j respectively4. Preparataand Vuillemin presented Ascend and Descend algorithms for Batcher's merge andthe Fast Fourier Transform.The class of Ascend and Descend algorithms are contained in the class ofnormal algorithms, consisting of the hypercube algorithms that utilize adjacent di-mensions in adjacent steps. It can be shown [Sch90] that a normal hypercubealgorithm g can be simulated with a constant slowdown on a buttery (and thus ona CCC): g is normal ) B:gOH:gRubyRuby [JS90] is a relational algebra, developed by Jones and Sheeran for designingintegrated circuits at a high level. The goal of Ruby is to algebraically specify thelayout of the wires that connect computational elements. The advantage of this4See for instance the de�nitions of rev given by (2.20) and (2.21).137
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approach is that it is possible to reason formally about a circuit, while still beingable to draw its physical representation. The PowerList constructors can be foundin Ruby as prede�ned relations. They are not given any special treatment; insteadthey are considered part of a \tool box" available to the circuit designer.In [JS91] Jones and Sheeran present recursive descriptions in Ruby of theButtery network, the Fast Fourier Transform algorithm, and Batcher's sortingnetworks. These descriptions were derived using geometrical considerations and aremore complex than the corresponding PowerList descriptions given by Misra [Mis94].5.2 Future WorkPowerListIn Chapter 2 we established that many PowerList functions can be implemented ef-�ciently on hypercubic architectures. However, most parallel architectures are nothypercubic or hypercube-like. More work is needed to present e�cient implemen-tations on common architectures, like the di�erent mesh-based architectures thatprevail in the marketplace. One approach, suggested by Cole [Col89] in the contextof divide and conquer algorithms, is to lay out the computation using H-trees on a2-dimensional mesh. This layout does not utilize all the processors of the mesh, andthus other strategies need to be pursued in the search for an optimal solution.Another approach to implementing PowerList, as well as ParLists and PLists, isto map the functions to Sisal programs [MSA+85]. This approach has the advantagethat Sisal has e�cient implementations on many parallel architectures.ParListThe issue of e�cient implementations becomes even more interesting when we turnto the ParList structure. The structure is obtained by adding sequential \alignment"138
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steps to functions when they are applied to inputs of odd length. Using a mappingstrategy like the one we propose for PowerList onto hypercubes, these alignmentsteps can be mapped onto the same nodes as the sub-results they operate on.We presented a strategy for extending an inductive proof of a property ofPowerList function, to a proof of the same property of the ParList function that isobtained by adding an odd de�ning case. We did not formalize the process by whichthis reuse can be achieved. It would be interesting to study in general how inductionproofs of properties over an inductively de�ned structure can be reused when thestructure is extended with new constructors.PListThe presentation of the PList notation in this dissertation lays the foundation forfuture work. Since the PList notation generalizes the PowerList notation, it followsthat all PowerList functions have PList descriptions. With PLists we can describealgorithms where the number of sub cases identi�ed in the divide phase of a divideand conquer description may vary as a function of the input.Since any number in Pos can be represented uniquely as the ascending se-quence of its prime factors, a PList function like sum (de�ned in Section 4.2) can bede�ned on PLists of any positive length, by changing the predicate de�ned accord-ingly5. This gives an alternative to the ParList theory for specifying functions overinputs of arbitrary lengths.This observation is interesting, but our goal has been to present abstractionsthat have a close relationship to parallel architectures. As far as the author knows,no one has built a practical parallel architectures based on the properties of primefactorizations.5For sum this is not necessary, since all possible ways to break down a PList to singletons yieldsthe same result. 139
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Higher DimensionsThe three data structures can be extended to more than one dimension by repli-cating the constructors for each dimension. This enables us to describe matrixcomputations, using a similar approach to the one presented in this dissertation.Misra [Mis94] presented an outline of this idea for PowerList. Preliminary resultsusing these extensions appear promising for the other data structures as well. Somesimple matrix algorithms have elegant descriptions in the higher dimension exten-sions of PowerList; for example, we have descriptions of di�erent versions of matrixmultiplication: the standard divide and conquer technique, the Strassen algorithm[Str69] and the hypercube algorithm by Dekel, Nassimi and Sahni [DNS81]. Thelatter algorithm is described using an extended version of PowerLists in [Kor94].5.3 Final CommentsThe three data structures we presented were useful in expressing parallel computa-tions. Equally important was the use of formal techniques to derive many of thesedescriptions from their speci�cations. This was possible because the structures weredesigned for equational reasoning and the functional setting provided referentialtransparency. The successful application of mechanical veri�cation techniques tothe PowerList structure further validates the design of that structure.We recognize that these three structures are not the �nal word in parallelprogramming. There are classes of computations that only have awkward descrip-tions in our structures. An example of such a computation is the parallel version ofQuicksort [Ble95], where subproblems have di�erent sizes depending on the valuesin the list to be sorted. However, we hope that we have demonstrated that forcomputations with regular communication patterns, these structures allow elegantand e�cient solutions to be constructed and veri�ed in a rigorous manner.140
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